Revealing the Structural Evolution of Electrode/Electrolyte Interphase Formation during Magnesium Plating and Stripping with operando EQCM-D
(2024) In ChemSusChem 17(4).- Abstract
Rechargeable magnesium batteries could provide future energy storage systems with high energy density. One remaining challenge is the development of electrolytes compatible with the negative Mg electrode, enabling uniform plating and stripping with high Coulombic efficiencies. Often improvements are hindered by a lack of fundamental understanding of processes occurring during cycling, as well as the existence and structure of a formed interphase layer at the electrode/electrolyte interface. Here, a magnesium model electrolyte based on magnesium bis(trifluoromethanesulfonyl)imide (Mg(TFSI)2) and MgCl2 with a borohydride as additive, dissolved in dimethoxyethane (DME), was used to investigate the initial... (More)
Rechargeable magnesium batteries could provide future energy storage systems with high energy density. One remaining challenge is the development of electrolytes compatible with the negative Mg electrode, enabling uniform plating and stripping with high Coulombic efficiencies. Often improvements are hindered by a lack of fundamental understanding of processes occurring during cycling, as well as the existence and structure of a formed interphase layer at the electrode/electrolyte interface. Here, a magnesium model electrolyte based on magnesium bis(trifluoromethanesulfonyl)imide (Mg(TFSI)2) and MgCl2 with a borohydride as additive, dissolved in dimethoxyethane (DME), was used to investigate the initial galvanostatic plating and stripping cycles operando using electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D). We show that side reactions lead to the formation of an interphase of irreversibly deposited Mg during the initial cycles. EQCM-D based hydrodynamic spectroscopy reveals the growth of a porous layer during Mg stripping. After the first cycles, the interphase layer is in a dynamic equilibrium between the formation of the layer and its dissolution, resulting in a stable thickness upon further cycling. This study provides operando information of the interphase formation, its changes during cycling and the dynamic behavior, helping to rationally develop future electrolytes and electrode/electrolyte interfaces and interphases.
(Less)
- author
- Schick, Benjamin W.
; Hou, Xu
LU
; Vanoppen, Viktor
; Uhl, Matthias
; Kruck, Matthias
; Berg, Erik J.
and Jacob, Timo
- publishing date
- 2024-02-22
- type
- Contribution to journal
- publication status
- published
- keywords
- electrochemistry, electrolyte, EQCM-D, hydrodynamic spectroscopy, interphase, magnesium battery, structure
- in
- ChemSusChem
- volume
- 17
- issue
- 4
- article number
- e202301269
- publisher
- John Wiley & Sons Inc.
- external identifiers
-
- scopus:85177170300
- pmid:37848390
- ISSN
- 1864-5631
- DOI
- 10.1002/cssc.202301269
- language
- English
- LU publication?
- no
- additional info
- Publisher Copyright: © 2023 The Authors. ChemSusChem published by Wiley-VCH GmbH.
- id
- ca67341b-bef9-4807-a0db-d9f49996d234
- date added to LUP
- 2025-12-05 22:25:58
- date last changed
- 2026-01-03 08:52:17
@article{ca67341b-bef9-4807-a0db-d9f49996d234,
abstract = {{<p>Rechargeable magnesium batteries could provide future energy storage systems with high energy density. One remaining challenge is the development of electrolytes compatible with the negative Mg electrode, enabling uniform plating and stripping with high Coulombic efficiencies. Often improvements are hindered by a lack of fundamental understanding of processes occurring during cycling, as well as the existence and structure of a formed interphase layer at the electrode/electrolyte interface. Here, a magnesium model electrolyte based on magnesium bis(trifluoromethanesulfonyl)imide (Mg(TFSI)<sub>2</sub>) and MgCl<sub>2</sub> with a borohydride as additive, dissolved in dimethoxyethane (DME), was used to investigate the initial galvanostatic plating and stripping cycles operando using electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D). We show that side reactions lead to the formation of an interphase of irreversibly deposited Mg during the initial cycles. EQCM-D based hydrodynamic spectroscopy reveals the growth of a porous layer during Mg stripping. After the first cycles, the interphase layer is in a dynamic equilibrium between the formation of the layer and its dissolution, resulting in a stable thickness upon further cycling. This study provides operando information of the interphase formation, its changes during cycling and the dynamic behavior, helping to rationally develop future electrolytes and electrode/electrolyte interfaces and interphases.</p>}},
author = {{Schick, Benjamin W. and Hou, Xu and Vanoppen, Viktor and Uhl, Matthias and Kruck, Matthias and Berg, Erik J. and Jacob, Timo}},
issn = {{1864-5631}},
keywords = {{electrochemistry; electrolyte; EQCM-D; hydrodynamic spectroscopy; interphase; magnesium battery; structure}},
language = {{eng}},
month = {{02}},
number = {{4}},
publisher = {{John Wiley & Sons Inc.}},
series = {{ChemSusChem}},
title = {{Revealing the Structural Evolution of Electrode/Electrolyte Interphase Formation during Magnesium Plating and Stripping with operando EQCM-D}},
url = {{http://dx.doi.org/10.1002/cssc.202301269}},
doi = {{10.1002/cssc.202301269}},
volume = {{17}},
year = {{2024}},
}