Weyl product algebras and modulation spaces
(2007) In Journal of Functional Analysis 251(2). p.463-491- Abstract
- We discuss algebraic properties of the Weyl product acting on modulation spaces. For a certain class of weight functions omega we prove that M-(omega)(p,q) is an algebra under the Weyl product if p epsilon [1, infinity] and 1 <= q <= min(p, p '). For the remaining cases P epsilon [1, infinity] and min(p, p ') < q <= infinity we show that the unweighted spaces M-p,M-q are not algebras under the Weyl product. (C) 2007 Elsevier Inc. All rights reserved.
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/655185
- author
- Holst, Anders LU ; Toft, Joachim and Wahlberg, Patrik
- organization
- publishing date
- 2007
- type
- Contribution to journal
- publication status
- published
- subject
- keywords
- modulation spaces, Weyl calculus, pseudo-differential calculus, Banach, algebras
- in
- Journal of Functional Analysis
- volume
- 251
- issue
- 2
- pages
- 463 - 491
- publisher
- Elsevier
- external identifiers
-
- wos:000250014400003
- scopus:34548389797
- ISSN
- 0022-1236
- DOI
- 10.1016/j.jfa.2007.07.007
- language
- English
- LU publication?
- yes
- id
- cae0bd4b-9c6c-4c6c-bd64-640481e52c11 (old id 655185)
- date added to LUP
- 2016-04-01 16:25:38
- date last changed
- 2024-10-11 20:50:57
@article{cae0bd4b-9c6c-4c6c-bd64-640481e52c11, abstract = {{We discuss algebraic properties of the Weyl product acting on modulation spaces. For a certain class of weight functions omega we prove that M-(omega)(p,q) is an algebra under the Weyl product if p epsilon [1, infinity] and 1 <= q <= min(p, p '). For the remaining cases P epsilon [1, infinity] and min(p, p ') < q <= infinity we show that the unweighted spaces M-p,M-q are not algebras under the Weyl product. (C) 2007 Elsevier Inc. All rights reserved.}}, author = {{Holst, Anders and Toft, Joachim and Wahlberg, Patrik}}, issn = {{0022-1236}}, keywords = {{modulation spaces; Weyl calculus; pseudo-differential calculus; Banach; algebras}}, language = {{eng}}, number = {{2}}, pages = {{463--491}}, publisher = {{Elsevier}}, series = {{Journal of Functional Analysis}}, title = {{Weyl product algebras and modulation spaces}}, url = {{http://dx.doi.org/10.1016/j.jfa.2007.07.007}}, doi = {{10.1016/j.jfa.2007.07.007}}, volume = {{251}}, year = {{2007}}, }