Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Quantification of left and right ventricular kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements

Carlsson, Marcus LU ; Heiberg, Einar LU ; Töger, Johannes LU and Arheden, Håkan LU (2012) In American Journal of Physiology: Heart and Circulatory Physiology 302(4). p.893-900
Abstract
Carlsson M, Heiberg E, Toger J, Arheden H. Quantification of left and right ventricular kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. Am J Physiol Heart Circ Physiol 302: H893-H900, 2012. First published December 16, 2011; doi: 10.1152/ajpheart. 00942.2011.-We aimed to quantify kinetic energy (KE) during the entire cardiac cycle of the left ventricle (LV) and right ventricle (RV) using four-dimensional phasecontrast magnetic resonance imaging (MRI). KE was quantified in healthy volunteers (n = 9) using an in-house developed software. Mean KE through the cardiac cycle of the LV and the RV were highly correlated (r(2) = 0.96). Mean KE was related to end-diastolic volume (r(2) = 0.66 for LV... (More)
Carlsson M, Heiberg E, Toger J, Arheden H. Quantification of left and right ventricular kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. Am J Physiol Heart Circ Physiol 302: H893-H900, 2012. First published December 16, 2011; doi: 10.1152/ajpheart. 00942.2011.-We aimed to quantify kinetic energy (KE) during the entire cardiac cycle of the left ventricle (LV) and right ventricle (RV) using four-dimensional phasecontrast magnetic resonance imaging (MRI). KE was quantified in healthy volunteers (n = 9) using an in-house developed software. Mean KE through the cardiac cycle of the LV and the RV were highly correlated (r(2) = 0.96). Mean KE was related to end-diastolic volume (r(2) = 0.66 for LV and r(2) = 0.74 for RV), end-systolic volume (r(2) = 0.59 and 0.68), and stroke volume (r(2) = 0.55 and 0.60), but not to ejection fraction (r(2) = 0.01, P = not significant for both). Three KE peaks were found in both ventricles, in systole, early diastole, and late diastole. In systole, peak KE in the LV was lower (4.9 +/- 0.4 mJ, P = 0.004) compared with the RV (7.5 +/- 0.8 mJ). In contrast, KE during early diastole was higher in the LV (6.0 +/- 0.6 mJ, P = 0.004) compared with the RV (3.6 +/- 0.4 mJ). The late diastolic peaks were smaller than the systolic and early diastolic peaks (1.3 +/- 0.2 and 1.2 +/- 0.2 mJ). Modeling estimated the proportion of KE to total external work, which comprised similar to 0.3% of LV external work and 3% of RV energy at rest and 3 vs. 24% during peak exercise. The higher early diastolic KE in the LV indicates that LV filling is more dependent on ventricular suction compared with the RV. RV early diastolic filling, on the other hand, may be caused to a higher degree of the return of the atrioventricular plane toward the base of the heart. The difference in ventricular geometry with a longer outflow tract in the RV compared with the LV explains the higher systolic KE in the RV. (Less)
Please use this url to cite or link to this publication:
author
; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
four-dimensional phase-contrast magnetic resonance imaging, cardiovascular magnetic resonance, energy, cardiac function, heart, failure
in
American Journal of Physiology: Heart and Circulatory Physiology
volume
302
issue
4
pages
893 - 900
publisher
American Physiological Society
external identifiers
  • wos:000300606700003
  • scopus:84856977611
ISSN
1522-1539
DOI
10.1152/ajpheart.00942.2011
language
English
LU publication?
yes
id
ceedb5f3-bffe-400e-b091-3eb2734ec01e (old id 2403200)
date added to LUP
2016-04-01 10:33:44
date last changed
2022-03-04 20:48:42
@article{ceedb5f3-bffe-400e-b091-3eb2734ec01e,
  abstract     = {{Carlsson M, Heiberg E, Toger J, Arheden H. Quantification of left and right ventricular kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. Am J Physiol Heart Circ Physiol 302: H893-H900, 2012. First published December 16, 2011; doi: 10.1152/ajpheart. 00942.2011.-We aimed to quantify kinetic energy (KE) during the entire cardiac cycle of the left ventricle (LV) and right ventricle (RV) using four-dimensional phasecontrast magnetic resonance imaging (MRI). KE was quantified in healthy volunteers (n = 9) using an in-house developed software. Mean KE through the cardiac cycle of the LV and the RV were highly correlated (r(2) = 0.96). Mean KE was related to end-diastolic volume (r(2) = 0.66 for LV and r(2) = 0.74 for RV), end-systolic volume (r(2) = 0.59 and 0.68), and stroke volume (r(2) = 0.55 and 0.60), but not to ejection fraction (r(2) = 0.01, P = not significant for both). Three KE peaks were found in both ventricles, in systole, early diastole, and late diastole. In systole, peak KE in the LV was lower (4.9 +/- 0.4 mJ, P = 0.004) compared with the RV (7.5 +/- 0.8 mJ). In contrast, KE during early diastole was higher in the LV (6.0 +/- 0.6 mJ, P = 0.004) compared with the RV (3.6 +/- 0.4 mJ). The late diastolic peaks were smaller than the systolic and early diastolic peaks (1.3 +/- 0.2 and 1.2 +/- 0.2 mJ). Modeling estimated the proportion of KE to total external work, which comprised similar to 0.3% of LV external work and 3% of RV energy at rest and 3 vs. 24% during peak exercise. The higher early diastolic KE in the LV indicates that LV filling is more dependent on ventricular suction compared with the RV. RV early diastolic filling, on the other hand, may be caused to a higher degree of the return of the atrioventricular plane toward the base of the heart. The difference in ventricular geometry with a longer outflow tract in the RV compared with the LV explains the higher systolic KE in the RV.}},
  author       = {{Carlsson, Marcus and Heiberg, Einar and Töger, Johannes and Arheden, Håkan}},
  issn         = {{1522-1539}},
  keywords     = {{four-dimensional phase-contrast magnetic resonance imaging; cardiovascular magnetic resonance; energy; cardiac function; heart; failure}},
  language     = {{eng}},
  number       = {{4}},
  pages        = {{893--900}},
  publisher    = {{American Physiological Society}},
  series       = {{American Journal of Physiology: Heart and Circulatory Physiology}},
  title        = {{Quantification of left and right ventricular kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements}},
  url          = {{http://dx.doi.org/10.1152/ajpheart.00942.2011}},
  doi          = {{10.1152/ajpheart.00942.2011}},
  volume       = {{302}},
  year         = {{2012}},
}