Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Modeling and Mechanistic Investigation of α-synuclein aggregation

Svanbergsson, Alexander LU orcid (2021) In Lund University, Faculty of Medicine Doctoral Dissertation Series
Abstract
Our understanding of the α-synuclein aggregation process and the consequences thereof is currently limited, which in turn prevents the development of targeted therapeutic interventions. The work presented here, as a part of this thesis, is focused on expanding our understanding of the molecular events involved in α-synuclein aggregation. Towards this goal we have studied the impact of pathologically relevant forms of α-synuclein, namely A53T mutant α-synuclein and fibrillar α-synuclein, and characterized their impact on N-methyl-D-aspartate receptor (NMDAR) diffusion and function. We found both mutant and fibrillar α-synuclein, decreased the NMDAR diffusion and expression at the post-synapse. Moving further towards the mechanistic... (More)
Our understanding of the α-synuclein aggregation process and the consequences thereof is currently limited, which in turn prevents the development of targeted therapeutic interventions. The work presented here, as a part of this thesis, is focused on expanding our understanding of the molecular events involved in α-synuclein aggregation. Towards this goal we have studied the impact of pathologically relevant forms of α-synuclein, namely A53T mutant α-synuclein and fibrillar α-synuclein, and characterized their impact on N-methyl-D-aspartate receptor (NMDAR) diffusion and function. We found both mutant and fibrillar α-synuclein, decreased the NMDAR diffusion and expression at the post-synapse. Moving further towards the mechanistic investigations we investigated the effect of two neuroprotective compounds on α-synuclein aggregation and found both compounds capable of clearing α-synuclein in cell and animal models potentially through autophagy related functions. In our efforts to scale mechanistic investigations we developed a high-throughput screening (HTS) capable FRET-based reporter for detection of α-synuclein aggregation in cells. Using this model, we performed a proof-of-concept screen of kinase inhibitors from which we identified three inhibitors with potent protective effects on α-synuclein aggregation. We further showed through mechanistic investigation that the protective effects likely involved lysosomal changes. Finally, in an effort to advance our knowledge of α-synuclein aggregation, we performed a genome-wide knockout screen to identify genes in the human genome with an impact on α-synuclein aggregation. This study also highlighted among other pathways the importance of the endolysosomal system in relation to α-synuclein aggregation. Many questions remain in regard to the molecular mechanisms involved in α-synuclein aggregation, but we hope our insights and models presented here will assist in the elucidation of the underlying mechanisms of α-synuclein aggregation. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Associate Professor Luk, Kelvin C., Perelman School of Medicine University of Pennsylvania
organization
publishing date
type
Thesis
publication status
published
subject
in
Lund University, Faculty of Medicine Doctoral Dissertation Series
issue
2021:136
pages
81 pages
publisher
Lund University, Faculty of Medicine
defense location
Belfragesalen, BMC D15, Klinikgatan 32 i Lund. Join by Zoom: https://lu-se.zoom.us/s/64082215394
defense date
2021-12-03 13:15:00
ISSN
1652-8220
ISBN
978-91-8021-143-7
language
English
LU publication?
yes
id
cfaf28f7-c763-4223-9483-75daaeec1ad9
date added to LUP
2021-11-12 15:29:08
date last changed
2021-11-18 11:08:48
@phdthesis{cfaf28f7-c763-4223-9483-75daaeec1ad9,
  abstract     = {{Our understanding of the α-synuclein aggregation process and the consequences thereof is currently limited, which in turn prevents the development of targeted therapeutic interventions.  The work presented here, as a part of this thesis, is focused on expanding our understanding of the molecular events involved in α-synuclein aggregation. Towards this goal we have studied the impact of pathologically relevant forms of α-synuclein, namely A53T mutant α-synuclein and fibrillar α-synuclein, and characterized their impact on N-methyl-D-aspartate receptor (NMDAR) diffusion and function. We found both mutant and fibrillar α-synuclein, decreased the NMDAR diffusion and expression at the post-synapse. Moving further towards the mechanistic investigations we investigated the effect of two neuroprotective compounds on α-synuclein aggregation and found both compounds capable of clearing α-synuclein in cell and animal models potentially through autophagy related functions. In our efforts to scale mechanistic investigations we developed a high-throughput screening (HTS) capable FRET-based reporter for detection of α-synuclein aggregation in cells. Using this model, we performed a proof-of-concept screen of kinase inhibitors from which we identified three inhibitors with potent protective effects on α-synuclein aggregation. We further showed through mechanistic investigation that the protective effects likely involved lysosomal changes. Finally, in an effort to advance our knowledge of α-synuclein aggregation, we performed a genome-wide knockout screen to identify genes in the human genome with an impact on α-synuclein aggregation. This study also highlighted among other pathways the importance of the endolysosomal system in relation to α-synuclein aggregation. Many questions remain in regard to the molecular mechanisms involved in α-synuclein aggregation, but we hope our insights and models presented here will assist in the elucidation of the underlying mechanisms of α-synuclein aggregation.}},
  author       = {{Svanbergsson, Alexander}},
  isbn         = {{978-91-8021-143-7}},
  issn         = {{1652-8220}},
  language     = {{eng}},
  number       = {{2021:136}},
  publisher    = {{Lund University, Faculty of Medicine}},
  school       = {{Lund University}},
  series       = {{Lund University, Faculty of Medicine Doctoral Dissertation Series}},
  title        = {{Modeling and Mechanistic Investigation of α-synuclein aggregation}},
  url          = {{https://lup.lub.lu.se/search/files/109638168/Alexander_Svanbergsson_web.pdf}},
  year         = {{2021}},
}