Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Optical potentials for the rare-isotope beam era

Hebborn, C. ; Nunes, F. M. ; Potel, G. ; Dickhoff, W. H. ; Holt, J. W. ; Atkinson, M. C. ; Baker, R. B. ; Barbieri, C. ; Blanchon, G. and Burrows, M. , et al. (2023) In Journal of Physics G: Nuclear and Particle Physics 50(6).
Abstract

We review recent progress and motivate the need for further developments in nuclear optical potentials that are widely used in the theoretical analysis of nucleon elastic scattering and reaction cross sections. In regions of the nuclear chart away from stability, which represent a frontier in nuclear science over the coming decade and which will be probed at new rare-isotope beam facilities worldwide, there is a targeted need to quantify and reduce theoretical reaction model uncertainties, especially with respect to nuclear optical potentials. We first describe the primary physics motivations for an improved description of nuclear reactions involving short-lived isotopes, focusing on its benefits for fundamental science discoveries and... (More)

We review recent progress and motivate the need for further developments in nuclear optical potentials that are widely used in the theoretical analysis of nucleon elastic scattering and reaction cross sections. In regions of the nuclear chart away from stability, which represent a frontier in nuclear science over the coming decade and which will be probed at new rare-isotope beam facilities worldwide, there is a targeted need to quantify and reduce theoretical reaction model uncertainties, especially with respect to nuclear optical potentials. We first describe the primary physics motivations for an improved description of nuclear reactions involving short-lived isotopes, focusing on its benefits for fundamental science discoveries and applications to medicine, energy, and security. We then outline the various methods in use today to build optical potentials starting from phenomenological, microscopic, and ab initio methods, highlighting in particular, the strengths and weaknesses of each approach. We then discuss publicly-available tools and resources facilitating the propagation of recent progresses in the field to practitioners. Finally, we provide a set of open challenges and recommendations for the field to advance the fundamental science goals of nuclear reaction studies in the rare-isotope beam era. This paper is the outcome of the Facility for Rare Isotope Beams Theory Alliance (FRIB-TA) topical program ‘Optical Potentials in Nuclear Physics’ held in March 2022 at FRIB. Its content is non-exhaustive, was chosen by the participants and reflects their efforts related to optical potentials.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; and (Less)
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
many-body theory, nuclear reactions, optical potentials, phenomenological optical model
in
Journal of Physics G: Nuclear and Particle Physics
volume
50
issue
6
article number
060501
publisher
IOP Publishing
external identifiers
  • scopus:85154615779
ISSN
0954-3899
DOI
10.1088/1361-6471/acc348
language
English
LU publication?
yes
id
d1199290-8bbc-439a-bb30-5f6d0d7fe847
date added to LUP
2023-06-12 14:37:41
date last changed
2023-06-12 14:37:41
@article{d1199290-8bbc-439a-bb30-5f6d0d7fe847,
  abstract     = {{<p>We review recent progress and motivate the need for further developments in nuclear optical potentials that are widely used in the theoretical analysis of nucleon elastic scattering and reaction cross sections. In regions of the nuclear chart away from stability, which represent a frontier in nuclear science over the coming decade and which will be probed at new rare-isotope beam facilities worldwide, there is a targeted need to quantify and reduce theoretical reaction model uncertainties, especially with respect to nuclear optical potentials. We first describe the primary physics motivations for an improved description of nuclear reactions involving short-lived isotopes, focusing on its benefits for fundamental science discoveries and applications to medicine, energy, and security. We then outline the various methods in use today to build optical potentials starting from phenomenological, microscopic, and ab initio methods, highlighting in particular, the strengths and weaknesses of each approach. We then discuss publicly-available tools and resources facilitating the propagation of recent progresses in the field to practitioners. Finally, we provide a set of open challenges and recommendations for the field to advance the fundamental science goals of nuclear reaction studies in the rare-isotope beam era. This paper is the outcome of the Facility for Rare Isotope Beams Theory Alliance (FRIB-TA) topical program ‘Optical Potentials in Nuclear Physics’ held in March 2022 at FRIB. Its content is non-exhaustive, was chosen by the participants and reflects their efforts related to optical potentials.</p>}},
  author       = {{Hebborn, C. and Nunes, F. M. and Potel, G. and Dickhoff, W. H. and Holt, J. W. and Atkinson, M. C. and Baker, R. B. and Barbieri, C. and Blanchon, G. and Burrows, M. and Capote, R. and Danielewicz, P. and Dupuis, M. and Elster, Ch and Escher, J. E. and Hlophe, L. and Idini, A. and Jayatissa, H. and Kay, B. P. and Kravvaris, K. and Manfredi, J. J. and Mercenne, A. and Morillon, B. and Perdikakis, G. and Pruitt, C. D. and Sargsyan, G. H. and Thompson, I. J. and Vorabbi, M. and Whitehead, T. R.}},
  issn         = {{0954-3899}},
  keywords     = {{many-body theory; nuclear reactions; optical potentials; phenomenological optical model}},
  language     = {{eng}},
  number       = {{6}},
  publisher    = {{IOP Publishing}},
  series       = {{Journal of Physics G: Nuclear and Particle Physics}},
  title        = {{Optical potentials for the rare-isotope beam era}},
  url          = {{http://dx.doi.org/10.1088/1361-6471/acc348}},
  doi          = {{10.1088/1361-6471/acc348}},
  volume       = {{50}},
  year         = {{2023}},
}