Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Cyclotron masses and g-factors of hybridized electron-hole states in InAs/GaSb quantum wells

Nilsson, Karin LU ; Zakharova, A. ; Lapushkin, I. ; Yen, S. T. and Chao, Koung-An LU (2006) In Physical Review B (Condensed Matter and Materials Physics) 74(7).
Abstract
Using the eight-band k center dot p model and the Burt-Foreman envelope function theory to perform self-consistent calculations, we have studied the effect of electron-hole hybridization on the cyclotron masses m(*) and the effective g-factors g(*) of two-dimensional quasiparticles in InAs/GaSb quantum wells under a magnetic field applied perpendicular to the interfaces. We can modify the degree of hybridization by changing the InAs and/or GaSb layer width, or by inserting a thin AlSb barrier. While electron-light-hole hybridization dominates at both low and high fields, due to a sequence of anticrossings between electronlike and heavy-holelike levels, there is also an important contribution from heavy-hole states to the strong... (More)
Using the eight-band k center dot p model and the Burt-Foreman envelope function theory to perform self-consistent calculations, we have studied the effect of electron-hole hybridization on the cyclotron masses m(*) and the effective g-factors g(*) of two-dimensional quasiparticles in InAs/GaSb quantum wells under a magnetic field applied perpendicular to the interfaces. We can modify the degree of hybridization by changing the InAs and/or GaSb layer width, or by inserting a thin AlSb barrier. While electron-light-hole hybridization dominates at both low and high fields, due to a sequence of anticrossings between electronlike and heavy-holelike levels, there is also an important contribution from heavy-hole states to the strong hybridization in the intermediate field range. The field-dependence of the hybridized energy eigenstates is manifested in the variations of m(*) and g(*). Characteristic discontinuous changes of both m(*) and g(*) appear at each anticrossing, resulting in a magnetic-field-driven oscillating behavior of these quantities for electronlike states of a given Landau level index. The electron g-factor can change sign when two eigenstates anticross. Hybridization of electron and hole states enhances the electron effective mass, and we have found a complicated dependence of this effect on the interaction strength. Without inserting an AlSb barrier, the strong interaction between the electronlike and the light-holelike states at low magnetic fields produces a large level repulsion, and hence relatively small effective masses and g-factors associated with these states. Intermediate interaction leads to weaker level repulsion and therefore very heavy electron cyclotron masses as well as large g-factors associated with the lowest Landau levels. A weak interaction only enhances the cyclotron masses of the electronlike states slightly. The hole effective masses change with both the magnetic field and the sample structure in a more complicated fashion. (Less)
Please use this url to cite or link to this publication:
author
; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Physical Review B (Condensed Matter and Materials Physics)
volume
74
issue
7
publisher
American Physical Society
external identifiers
  • wos:000240238800059
  • scopus:33746905549
ISSN
1098-0121
DOI
10.1103/PhysRevB.74.075308
language
English
LU publication?
yes
id
d30ba162-85f8-478b-b6fe-b09fd5a8f284 (old id 908491)
date added to LUP
2016-04-01 16:19:47
date last changed
2022-04-22 21:14:10
@article{d30ba162-85f8-478b-b6fe-b09fd5a8f284,
  abstract     = {{Using the eight-band k center dot p model and the Burt-Foreman envelope function theory to perform self-consistent calculations, we have studied the effect of electron-hole hybridization on the cyclotron masses m(*) and the effective g-factors g(*) of two-dimensional quasiparticles in InAs/GaSb quantum wells under a magnetic field applied perpendicular to the interfaces. We can modify the degree of hybridization by changing the InAs and/or GaSb layer width, or by inserting a thin AlSb barrier. While electron-light-hole hybridization dominates at both low and high fields, due to a sequence of anticrossings between electronlike and heavy-holelike levels, there is also an important contribution from heavy-hole states to the strong hybridization in the intermediate field range. The field-dependence of the hybridized energy eigenstates is manifested in the variations of m(*) and g(*). Characteristic discontinuous changes of both m(*) and g(*) appear at each anticrossing, resulting in a magnetic-field-driven oscillating behavior of these quantities for electronlike states of a given Landau level index. The electron g-factor can change sign when two eigenstates anticross. Hybridization of electron and hole states enhances the electron effective mass, and we have found a complicated dependence of this effect on the interaction strength. Without inserting an AlSb barrier, the strong interaction between the electronlike and the light-holelike states at low magnetic fields produces a large level repulsion, and hence relatively small effective masses and g-factors associated with these states. Intermediate interaction leads to weaker level repulsion and therefore very heavy electron cyclotron masses as well as large g-factors associated with the lowest Landau levels. A weak interaction only enhances the cyclotron masses of the electronlike states slightly. The hole effective masses change with both the magnetic field and the sample structure in a more complicated fashion.}},
  author       = {{Nilsson, Karin and Zakharova, A. and Lapushkin, I. and Yen, S. T. and Chao, Koung-An}},
  issn         = {{1098-0121}},
  language     = {{eng}},
  number       = {{7}},
  publisher    = {{American Physical Society}},
  series       = {{Physical Review B (Condensed Matter and Materials Physics)}},
  title        = {{Cyclotron masses and g-factors of hybridized electron-hole states in InAs/GaSb quantum wells}},
  url          = {{http://dx.doi.org/10.1103/PhysRevB.74.075308}},
  doi          = {{10.1103/PhysRevB.74.075308}},
  volume       = {{74}},
  year         = {{2006}},
}