Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Diffusive-ballistic heat transport in thin films using energy conserving dissipative particle dynamics

Yamada, Toru LU ; Hamian, Sina ; Sundén, Bengt LU ; Park, Keunhan and Faghri, Mohammad (2013) In International Journal of Heat and Mass Transfer 61. p.287-292
Abstract
Diffusive-ballistic heat transport in thin films was simulated using energy conserving dissipative particle dynamics (DPDe). The solution domain was considered to be two-dimensional with DPD particles distributed uniformly under constant temperature boundary conditions at the top and bottom walls and periodic boundaries at the side walls. The effects of phonon mean free path were incorporated by its relation to the cutoff radius of energy interaction. This cutoff radius was based on the Knudsen number using the existing phonon-boundary scattering models. The simulations for 0.1 < Kn < 10 were obtained with the different modifications of the cutoff radius. The results were presented in form of a nondimensional temperature profile... (More)
Diffusive-ballistic heat transport in thin films was simulated using energy conserving dissipative particle dynamics (DPDe). The solution domain was considered to be two-dimensional with DPD particles distributed uniformly under constant temperature boundary conditions at the top and bottom walls and periodic boundaries at the side walls. The effects of phonon mean free path were incorporated by its relation to the cutoff radius of energy interaction. This cutoff radius was based on the Knudsen number using the existing phonon-boundary scattering models. The simulations for 0.1 < Kn < 10 were obtained with the different modifications of the cutoff radius. The results were presented in form of a nondimensional temperature profile across the thin film and were compared with the semi-analytical solution of the equation of phonon radiative transport (EPRT). When the phonon-boundary scattering is not considered, the DPDe simulation results have more discrepancies compared with the EPRT solution as Kn increases, indicating that the phonon-boundary scattering plays an important role when the heat transport across the film becomes more ballistic. The results demonstrate that the DPDe can simulate the diffusive-ballistic heat transport for a broad range of Kn, but phonon-boundary scattering should be considered for the accurate simulation of the ballistic heat transport. (C) 2013 Elsevier Ltd. All rights reserved. (Less)
Please use this url to cite or link to this publication:
author
; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Nanoscale, Thin film, Heat transport, Temperature jump, Energy, conserving dissipative particle dynamics
in
International Journal of Heat and Mass Transfer
volume
61
pages
287 - 292
publisher
Pergamon Press Ltd.
external identifiers
  • wos:000318260200028
  • scopus:84874919130
ISSN
0017-9310
DOI
10.1016/j.ijheatmasstransfer.2013.02.011
language
English
LU publication?
yes
id
d4a0d2fb-e7cf-442d-85fc-1f0c9425086e (old id 3843146)
date added to LUP
2016-04-01 11:00:05
date last changed
2022-03-12 19:02:54
@article{d4a0d2fb-e7cf-442d-85fc-1f0c9425086e,
  abstract     = {{Diffusive-ballistic heat transport in thin films was simulated using energy conserving dissipative particle dynamics (DPDe). The solution domain was considered to be two-dimensional with DPD particles distributed uniformly under constant temperature boundary conditions at the top and bottom walls and periodic boundaries at the side walls. The effects of phonon mean free path were incorporated by its relation to the cutoff radius of energy interaction. This cutoff radius was based on the Knudsen number using the existing phonon-boundary scattering models. The simulations for 0.1 &lt; Kn &lt; 10 were obtained with the different modifications of the cutoff radius. The results were presented in form of a nondimensional temperature profile across the thin film and were compared with the semi-analytical solution of the equation of phonon radiative transport (EPRT). When the phonon-boundary scattering is not considered, the DPDe simulation results have more discrepancies compared with the EPRT solution as Kn increases, indicating that the phonon-boundary scattering plays an important role when the heat transport across the film becomes more ballistic. The results demonstrate that the DPDe can simulate the diffusive-ballistic heat transport for a broad range of Kn, but phonon-boundary scattering should be considered for the accurate simulation of the ballistic heat transport. (C) 2013 Elsevier Ltd. All rights reserved.}},
  author       = {{Yamada, Toru and Hamian, Sina and Sundén, Bengt and Park, Keunhan and Faghri, Mohammad}},
  issn         = {{0017-9310}},
  keywords     = {{Nanoscale; Thin film; Heat transport; Temperature jump; Energy; conserving dissipative particle dynamics}},
  language     = {{eng}},
  pages        = {{287--292}},
  publisher    = {{Pergamon Press Ltd.}},
  series       = {{International Journal of Heat and Mass Transfer}},
  title        = {{Diffusive-ballistic heat transport in thin films using energy conserving dissipative particle dynamics}},
  url          = {{http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.02.011}},
  doi          = {{10.1016/j.ijheatmasstransfer.2013.02.011}},
  volume       = {{61}},
  year         = {{2013}},
}