Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Finite Element Analysis of Structure-acoustic Systems : Methods and Applications

Davidsson, Peter LU (2001) In TVSM-3000 200(TVSM-3060).
Abstract
Paper 1
The problem in which a flexible structure interacts with an acoustic fluid is analysed by use of the finite element method. With increasing complexity of the geometry and when increasing the frequency limit is of interest, the number of degrees of freedom needed to describe the system becomes very large. To reduce the coupled system, modal analysis is performed in the structural and in the fluid domain separately. The uncoupled eigenvectors are then used to reduce the coupled problem. A method for choosing which uncoupled eigenvectors to include in this operation is derived, further reducing the system. A numerical example is provided, demonstrating the efficiency of the method.

Paper 2
The unsymmetrical... (More)
Paper 1
The problem in which a flexible structure interacts with an acoustic fluid is analysed by use of the finite element method. With increasing complexity of the geometry and when increasing the frequency limit is of interest, the number of degrees of freedom needed to describe the system becomes very large. To reduce the coupled system, modal analysis is performed in the structural and in the fluid domain separately. The uncoupled eigenvectors are then used to reduce the coupled problem. A method for choosing which uncoupled eigenvectors to include in this operation is derived, further reducing the system. A numerical example is provided, demonstrating the efficiency of the method.

Paper 2
The unsymmetrical eigenvalue problem involved in analysing structure-acoustic problems by use of the finite element method with a pressure formulation in the
fluid domain can be reduced through transforming it into a symmetric standard eigenvalue problem. The paper shows that when hysteretic damping is introduced in both the structural and the fluid domain, the problem can still be treated as a symmetric standard eigenvalue problem, which becomes complexvalued due to the damping.

Paper 3
This paper, which is based on the results reported in Paper 1 and 2, describes the implementation of structure-acoustic finite element analysis in an integrated modelling environment, one which has interfaces to programs for meshing and for finite element analysis. The aim is to determine the vehicle interior noise on the basis of the force applied to the structure. An interface to a code developed for performing structure-acoustic analysis involving coupled modal analysis and
frequency response analysis, is created. The possibilities this modelling environment provides are demonstrated. Use of this approach simplies cooperation between researchers and their interaction with industrial groups.

Paper4
Double leaf walls consisting of sheet-metal wall studs covered with plaster boards are studied. Acoustic behavior in the low frequency range is evaluated, aimed at determining the influence of the wall properties on sound reduction.The wall parameters studied are wall thickness, the number of plaster boards used, the stiffness of the wall stud web, and the boundary conditions.The influence of the dimensions of the connecting rooms is also studied.It is concluded that in the low frequency range the sound reduction a wall achieves can only be predicted by studying the actual room-wall-room conguration in question. (Less)
Please use this url to cite or link to this publication:
author
supervisor
organization
publishing date
type
Thesis
publication status
published
subject
in
TVSM-3000
volume
200
issue
TVSM-3060
edition
1
pages
79 pages
publisher
Division of Structural Mechanics, LTH
ISSN
0281-6679
language
English
LU publication?
yes
id
d8a901a1-34f1-4903-8ebb-66a285c1cdb1
date added to LUP
2023-09-14 16:04:51
date last changed
2023-10-16 09:45:58
@misc{d8a901a1-34f1-4903-8ebb-66a285c1cdb1,
  abstract     = {{Paper 1<br/>The problem in which a flexible structure interacts with an acoustic fluid is analysed by use of the finite element method. With increasing complexity of the geometry and when increasing the frequency limit is of interest, the number of degrees of freedom needed to describe the system becomes very large. To reduce the coupled system, modal analysis is performed in the structural and in the  fluid domain separately. The uncoupled eigenvectors are then used to reduce the coupled problem. A method for choosing which uncoupled eigenvectors to include in this operation is derived, further reducing the system. A numerical example is provided, demonstrating the efficiency of the method.<br/><br/>Paper 2<br/>The unsymmetrical eigenvalue problem involved in analysing structure-acoustic problems by use of the finite element method with a pressure formulation in the <br/>fluid domain can be reduced through transforming it into a symmetric standard eigenvalue problem. The paper shows that when hysteretic damping is introduced in both the structural and the  fluid domain, the problem can still be treated as a symmetric standard eigenvalue problem, which becomes complexvalued due to the damping.<br/><br/>Paper 3<br/>This paper, which is based on the results reported in Paper 1 and 2, describes the implementation of structure-acoustic finite element analysis in an integrated modelling environment, one which has interfaces to programs for meshing and for finite element analysis. The aim is to determine the vehicle interior noise on the basis of the force applied to the structure. An interface to a code developed for performing structure-acoustic analysis involving coupled modal analysis and<br/>frequency response analysis, is created. The possibilities this modelling environment provides are demonstrated. Use of this approach simplies cooperation between researchers and their interaction with industrial groups.<br/><br/>Paper4<br/>Double leaf walls consisting of sheet-metal wall studs covered with plaster boards are studied. Acoustic behavior in the low frequency range is evaluated, aimed at determining the influence of the wall properties on sound reduction.The wall parameters studied are wall thickness, the number of plaster boards used, the stiffness of the wall stud web, and the boundary conditions.The influence of the dimensions of the connecting rooms is also studied.It is concluded that in the low frequency range the sound reduction a wall achieves can only be predicted by studying the actual room-wall-room conguration in question.}},
  author       = {{Davidsson, Peter}},
  issn         = {{0281-6679}},
  language     = {{eng}},
  note         = {{Licentiate Thesis}},
  number       = {{TVSM-3060}},
  publisher    = {{Division of Structural Mechanics, LTH}},
  series       = {{TVSM-3000}},
  title        = {{Finite Element Analysis of Structure-acoustic Systems : Methods and Applications}},
  url          = {{https://lup.lub.lu.se/search/files/160554528/web3060.pdf}},
  volume       = {{200}},
  year         = {{2001}},
}