Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Proteome of the nematode-trapping cells of the fungus Monacrosporium haptotylum.

Andersson, Karl-Magnus LU ; Meerupati, Tejashwari LU ; Levander, Fredrik LU ; Friman, Eva LU ; Ahrén, Dag LU orcid and Tunlid, Anders LU (2013) In Applied and Environmental Microbiology 79(16). p.4993-5004
Abstract
Many nematophagous fungi use morphological structures called traps to capture nematodes by adhesion or mechanically. To better understand the cellular functions of adhesive traps, the trap cell proteome of the fungus Monacrosporium haptotylum was characterized. The trap of M. haptotylum consists of a unicellular structure called knob that develops at the apex of a hyphae. Proteins extracted from knobs and mycelia were analyzed using SDS-PAGE and LC-MS/MS. The peptide sequences were matched against predicted gene models from the recently sequenced M. haptotylum genome. In total, 336 proteins were identified, with 54 being expressed at significantly higher levels in the knobs than in the mycelia. The upregulated knob proteins included... (More)
Many nematophagous fungi use morphological structures called traps to capture nematodes by adhesion or mechanically. To better understand the cellular functions of adhesive traps, the trap cell proteome of the fungus Monacrosporium haptotylum was characterized. The trap of M. haptotylum consists of a unicellular structure called knob that develops at the apex of a hyphae. Proteins extracted from knobs and mycelia were analyzed using SDS-PAGE and LC-MS/MS. The peptide sequences were matched against predicted gene models from the recently sequenced M. haptotylum genome. In total, 336 proteins were identified, with 54 being expressed at significantly higher levels in the knobs than in the mycelia. The upregulated knob proteins included peptidases, small secreted proteins with unknown function and putative cell surface adhesins containing carbohydrate-binding domains including the WSC domain. Phylogenetic analysis showed that all upregulated WSC domain proteins belonged to a large, expanded cluster of paralogs in M. haptotylum. Several peptidases and homologs to experimentally verified proteins in other pathogenic fungi were also upregulated in the knob proteome. Complementary profiling of gene expression at the transcriptome level showed poor correlation between the upregulation of knob proteins and their corresponding transcripts. We propose that the traps of M. haptotylum contain many of the proteins needed in the early stages of infection, and that the trap cells can tightly control the translation and degradation of these proteins to minimize the cost of protein synthesis. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Applied and Environmental Microbiology
volume
79
issue
16
pages
4993 - 5004
publisher
American Society for Microbiology
external identifiers
  • wos:000322161700026
  • pmid:23770896
  • scopus:84881003350
  • pmid:23770896
ISSN
0099-2240
DOI
10.1128/AEM.01390-13
language
English
LU publication?
yes
id
da010756-e8b8-4664-a658-b83ef7146333 (old id 3913344)
date added to LUP
2016-04-01 10:22:05
date last changed
2022-01-25 22:35:31
@article{da010756-e8b8-4664-a658-b83ef7146333,
  abstract     = {{Many nematophagous fungi use morphological structures called traps to capture nematodes by adhesion or mechanically. To better understand the cellular functions of adhesive traps, the trap cell proteome of the fungus Monacrosporium haptotylum was characterized. The trap of M. haptotylum consists of a unicellular structure called knob that develops at the apex of a hyphae. Proteins extracted from knobs and mycelia were analyzed using SDS-PAGE and LC-MS/MS. The peptide sequences were matched against predicted gene models from the recently sequenced M. haptotylum genome. In total, 336 proteins were identified, with 54 being expressed at significantly higher levels in the knobs than in the mycelia. The upregulated knob proteins included peptidases, small secreted proteins with unknown function and putative cell surface adhesins containing carbohydrate-binding domains including the WSC domain. Phylogenetic analysis showed that all upregulated WSC domain proteins belonged to a large, expanded cluster of paralogs in M. haptotylum. Several peptidases and homologs to experimentally verified proteins in other pathogenic fungi were also upregulated in the knob proteome. Complementary profiling of gene expression at the transcriptome level showed poor correlation between the upregulation of knob proteins and their corresponding transcripts. We propose that the traps of M. haptotylum contain many of the proteins needed in the early stages of infection, and that the trap cells can tightly control the translation and degradation of these proteins to minimize the cost of protein synthesis.}},
  author       = {{Andersson, Karl-Magnus and Meerupati, Tejashwari and Levander, Fredrik and Friman, Eva and Ahrén, Dag and Tunlid, Anders}},
  issn         = {{0099-2240}},
  language     = {{eng}},
  number       = {{16}},
  pages        = {{4993--5004}},
  publisher    = {{American Society for Microbiology}},
  series       = {{Applied and Environmental Microbiology}},
  title        = {{Proteome of the nematode-trapping cells of the fungus Monacrosporium haptotylum.}},
  url          = {{http://dx.doi.org/10.1128/AEM.01390-13}},
  doi          = {{10.1128/AEM.01390-13}},
  volume       = {{79}},
  year         = {{2013}},
}