Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Heart age estimated using explainable advanced electrocardiography

Lindow, Thomas LU ; Palencia-Lamela, Israel ; Schlegel, Todd T. and Ugander, Martin LU (2022) In Scientific Reports 12(1).
Abstract

Electrocardiographic (ECG) Heart Age conveying cardiovascular risk has been estimated by both Bayesian and artificial intelligence approaches. We hypothesised that explainable measures from the 10-s 12-lead ECG could successfully predict Bayesian 5-min ECG Heart Age. Advanced analysis was performed on ECGs from healthy subjects and patients with cardiovascular risk or proven heart disease. Regression models were used to predict patients’ Bayesian 5-min ECG Heart Ages from their standard, resting 10-s 12-lead ECGs. The difference between 5-min and 10-s ECG Heart Ages were analyzed, as were the differences between 10-s ECG Heart Age and the chronological age (the Heart Age Gap). In total, 2,771 subjects were included (n = 1682 healthy... (More)

Electrocardiographic (ECG) Heart Age conveying cardiovascular risk has been estimated by both Bayesian and artificial intelligence approaches. We hypothesised that explainable measures from the 10-s 12-lead ECG could successfully predict Bayesian 5-min ECG Heart Age. Advanced analysis was performed on ECGs from healthy subjects and patients with cardiovascular risk or proven heart disease. Regression models were used to predict patients’ Bayesian 5-min ECG Heart Ages from their standard, resting 10-s 12-lead ECGs. The difference between 5-min and 10-s ECG Heart Ages were analyzed, as were the differences between 10-s ECG Heart Age and the chronological age (the Heart Age Gap). In total, 2,771 subjects were included (n = 1682 healthy volunteers, n = 305 with cardiovascular risk factors, n = 784 with cardiovascular disease). Overall, 10-s Heart Age showed strong agreement with the 5-min Heart Age (R2 = 0.94, p < 0.001, mean ± SD bias 0.0 ± 5.1 years). The Heart Age Gap was 0.0 ± 5.7 years in healthy individuals, 7.4 ± 7.3 years in subjects with cardiovascular risk factors (p < 0.001), and 14.3 ± 9.2 years in patients with cardiovascular disease (p < 0.001). Heart Age can be accurately estimated from a 10-s 12-lead ECG in a transparent and explainable fashion based on known ECG measures, without deep neural network-type artificial intelligence techniques. The Heart Age Gap increases markedly with cardiovascular risk and disease.

(Less)
Please use this url to cite or link to this publication:
author
; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Scientific Reports
volume
12
issue
1
article number
9840
publisher
Nature Publishing Group
external identifiers
  • pmid:35701514
  • scopus:85132071704
ISSN
2045-2322
DOI
10.1038/s41598-022-13912-9
language
English
LU publication?
yes
id
daa1bfe0-1321-404c-959c-a55574685a66
date added to LUP
2022-09-05 14:07:45
date last changed
2024-04-18 13:39:51
@article{daa1bfe0-1321-404c-959c-a55574685a66,
  abstract     = {{<p>Electrocardiographic (ECG) Heart Age conveying cardiovascular risk has been estimated by both Bayesian and artificial intelligence approaches. We hypothesised that explainable measures from the 10-s 12-lead ECG could successfully predict Bayesian 5-min ECG Heart Age. Advanced analysis was performed on ECGs from healthy subjects and patients with cardiovascular risk or proven heart disease. Regression models were used to predict patients’ Bayesian 5-min ECG Heart Ages from their standard, resting 10-s 12-lead ECGs. The difference between 5-min and 10-s ECG Heart Ages were analyzed, as were the differences between 10-s ECG Heart Age and the chronological age (the Heart Age Gap). In total, 2,771 subjects were included (n = 1682 healthy volunteers, n = 305 with cardiovascular risk factors, n = 784 with cardiovascular disease). Overall, 10-s Heart Age showed strong agreement with the 5-min Heart Age (R<sup>2</sup> = 0.94, p &lt; 0.001, mean ± SD bias 0.0 ± 5.1 years). The Heart Age Gap was 0.0 ± 5.7 years in healthy individuals, 7.4 ± 7.3 years in subjects with cardiovascular risk factors (p &lt; 0.001), and 14.3 ± 9.2 years in patients with cardiovascular disease (p &lt; 0.001). Heart Age can be accurately estimated from a 10-s 12-lead ECG in a transparent and explainable fashion based on known ECG measures, without deep neural network-type artificial intelligence techniques. The Heart Age Gap increases markedly with cardiovascular risk and disease.</p>}},
  author       = {{Lindow, Thomas and Palencia-Lamela, Israel and Schlegel, Todd T. and Ugander, Martin}},
  issn         = {{2045-2322}},
  language     = {{eng}},
  number       = {{1}},
  publisher    = {{Nature Publishing Group}},
  series       = {{Scientific Reports}},
  title        = {{Heart age estimated using explainable advanced electrocardiography}},
  url          = {{http://dx.doi.org/10.1038/s41598-022-13912-9}},
  doi          = {{10.1038/s41598-022-13912-9}},
  volume       = {{12}},
  year         = {{2022}},
}