Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

SPECT Imaging using Pinhole Collimation : System Design and Simulation Studies for Pre-Clinical and Clinical Imaging

Peterson, Mikael LU (2017)
Abstract
The focus of this dissertation is the use of pinhole collimation in Nuclear Medicine. A pinhole is a single aperture in an opaque material that is placed between the detector and source of interest, and photons must pass through the hole to reach the detector. The choices of pinhole parameters, e.g. the pinhole material and size of the opening, are closely linked to the performance of the detector system.
Pinhole-based single-photon emission computed tomography (SPECT) has primarily been used to investigate human diseases in small animals because of the superior resolution and efficiency achieved with this type of collimation. The SPECT methodology involves determination of the radiopharmaceutical distribution within an object. An... (More)
The focus of this dissertation is the use of pinhole collimation in Nuclear Medicine. A pinhole is a single aperture in an opaque material that is placed between the detector and source of interest, and photons must pass through the hole to reach the detector. The choices of pinhole parameters, e.g. the pinhole material and size of the opening, are closely linked to the performance of the detector system.
Pinhole-based single-photon emission computed tomography (SPECT) has primarily been used to investigate human diseases in small animals because of the superior resolution and efficiency achieved with this type of collimation. The SPECT methodology involves determination of the radiopharmaceutical distribution within an object. An essential step in this methodology is the image reconstruction, i.e., the transformation of the acquired two-dimensional (2D) data into a three-dimensional (3D) distribution.
This dissertation describes the development of a SPECT system for small animal imaging called InSPECT. In Paper I, determination of the reconstructed resolution for a prototype setup with a video-based detector system is discussed, and in Paper II, construction of the InSPECT system with eight separate video detectors is described. A fusible metal, Rose’s metal, was used to cast the centre bore, in which platinum pinholes were mounted. The cast pieces could adequately shield the detectors and could be machined with a high precision. Thus, Rose’s metal, which is relatively inexpensive, could be employed for pinhole collimation but would lead to image characteristics that are less favourable than those achievable using gold or platinum pinholes. In Paper III, we present an evaluation of the performance of Rose’s metal pinholes and a comparison with other pinhole materials.
Monte Carlo-based computer models can be utilised to simulate the image formation process and can enable expensive and time-consuming instrumentation changes to be evaluated prior to building prototypes. In Paper IV, we discuss the implementation of a cadmium zinc telluride (CZT) semiconductor detector model in the Monte Carlo program SIMIND. The accuracy of the model was confirmed by comparing its results to measurements. In Paper V, we address the use of the CZT model in an SIMIND-based maximum-likelihood–expectation-maximisation iterative reconstruction of the measured data. The images reconstructed using the computer model enabled the quantification of the total activity without requiring calibration of the detector count per unit second per unit activity. In Paper VI, we describe the simulation of a dedicated SPECT scanner that employs 19 semiconductor detector–pinhole units for myocardial perfusion imaging. Compared to conventional SPECT devices, this camera is more efficient, and the efficiency is often traded for a reduction in imaging times and patient doses. An alternative use of the efficiency is to use smaller pinhole which yields better spatial resolution in the projections. No increase in contrast-to-noise was seen for smaller pinholes since any increase in contrast was also accompanied by an equal increase in noise. Also, changes in transmurality affected the CNR to a greater extent than did changes in lesion extent.
(Less)
Abstract (Swedish)
Nuklearmedicinsk bildtagning med hjälp av radiofarmaka är ett viktigt verktyg för att studera biologiska processer och humansjukdomar. Bildtagning sker ofta med en detektor i kombination med en kollimator. En typ av kollimering är pinnhålskollimering, där ett pinnhål i ett opakt material placeras mellan en källa och en detektor. Pinnhålet fyller samma funktion som en optisk lins då emitterade fotoner måste passera genom hålet för att nå detektorn. Valet av pinnhålsparametrar, exempelvis material och storlek på öppningen, spelar stor roll för detektorsystemets slutgiltiga prestanda.
Pinnhålskollimering används även vid Single-photon emission computed tomography (SPECT). Denna metodik avser både bildtagning från flera vinklar och... (More)
Nuklearmedicinsk bildtagning med hjälp av radiofarmaka är ett viktigt verktyg för att studera biologiska processer och humansjukdomar. Bildtagning sker ofta med en detektor i kombination med en kollimator. En typ av kollimering är pinnhålskollimering, där ett pinnhål i ett opakt material placeras mellan en källa och en detektor. Pinnhålet fyller samma funktion som en optisk lins då emitterade fotoner måste passera genom hålet för att nå detektorn. Valet av pinnhålsparametrar, exempelvis material och storlek på öppningen, spelar stor roll för detektorsystemets slutgiltiga prestanda.
Pinnhålskollimering används även vid Single-photon emission computed tomography (SPECT). Denna metodik avser både bildtagning från flera vinklar och rekonstruktion av radiofarmakats tredimensionella fördelning. Pinnhålsbaserad SPECT används bland annat för att studera humansjukdomar i djurmodeller, så som råttor och möss. För detta är pinnhålskollimering ett utmärkt val då tekniken tillåter förstoring av små strukturer och därför kan avbilda aktivitetsfördelningar med hög upplösning.
I denna avhandling beskrivs utvecklingen av ett tomografiskt smådjurskamerasystem vid namn InSPECT. Artikel I beskriver mätningar och bestämningen av den rekonstruerade upplösningen för en prototypuppställning bestående av en videodetektor i kombination med ett pinnhål. I artikel II beskrivs byggandet av ett kamerasystem med åtta videodetektorer (ett pinnhål per detektor). Vi använde Roses metall för att tillverka ett centralstycke som både skärmar detektorerna och tillät montering av platinapinnhål. Fördelen med Roses metall är att den har hög densitet och atomnummer, låg smältpunkt och att de gjutna delarna kan bearbetas med hög precision. Materialet kan även användas för pinnhålskollimering. Fördelen är att Roses metall är billigt jämfört med exempelvis pinnhål av guld och platina, men bildkvalitén påverkas negativt av att en högre andel fotoner penetrerar och sprids i pinnhålsmaterialet. I artikel III presenteras en utvärdering av bildprestandan för pinnhål av Roses metall och en jämförelse med andra pinnhålsmaterial.
Ett sätt att simulera bildtagning med pinnhål är att använda Monte Carlo-program. Dessa program simulerar fotontransport och detektion för en given mätgeometri och detektor. Med Monte Carlo-simuleringar går det exempelvis att utvärdera dyra och tidskrävande förändringar i hårdvara istället för att bygga prototyper. Artikel IV avhandlar implementeringen av en halvledardetektormodell, baserad på halvledarmaterialet CZT, i Monte Carlo-programmet SIMIND. Modellens goda noggrannhet bekräftades genom jämförelser med mätt data. I artikel V används CZT-modellen för Monte Carlo-baserad rekonstruktion av data från ett kliniskt SPECT-system. De rekonstruerade bilderna är kvantitativa och behöver ej normeras med hjälp av en extern kalibrering. Artikel VI beskriver simuleringen av en dedikerad SPECT-kamera med 19 detektor-pinnhålenheter som används vid myokardscintigrafi. De dedikerade pinnhålssystemen har högre känslighet än konventionella system, vilket används för att korta undersökningstider och minska patientdoser. Ett annat alternativ, som också minskar känsligheten, är att minska storleken på pinnhålet vilket leder till bättre upplösning. Våra resultat visar att kontrast-till-brus-förhållandet inte gynnas av mindre pinnhål. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Associate Professor de Jong, Hugo, University Medical Center Utrecht, Department of Radiology, Utrecht, the Netherlands
organization
publishing date
type
Thesis
publication status
published
subject
keywords
Pinhole SPECT tomography, Nuclear medicine imaging, Monte Carlo-based image reconstruction
pages
167 pages
publisher
Lund University, Faculty of Science, Department of Medical Radiation Physics
defense location
Lecture hall F3, Skåne University Hospital, Lund
defense date
2017-09-22 9:00:00
ISBN
978-91-7753-378-8
978-91-7753-377-1
language
English
LU publication?
yes
id
db5b46b7-8c92-44ea-9179-77b0cfd1372f
date added to LUP
2017-08-28 14:53:38
date last changed
2023-10-05 09:22:44
@phdthesis{db5b46b7-8c92-44ea-9179-77b0cfd1372f,
  abstract     = {{The focus of this dissertation is the use of pinhole collimation in Nuclear Medicine. A pinhole is a single aperture in an opaque material that is placed between the detector and source of interest, and photons must pass through the hole to reach the detector. The choices of pinhole parameters, e.g. the pinhole material and size of the opening, are closely linked to the performance of the detector system.<br/>Pinhole-based single-photon emission computed tomography (SPECT) has primarily been used to investigate human diseases in small animals because of the superior resolution and efficiency achieved with this type of collimation. The SPECT methodology involves determination of the radiopharmaceutical distribution within an object. An essential step in this methodology is the image reconstruction, i.e., the transformation of the acquired two-dimensional (2D) data into a three-dimensional (3D) distribution.<br/>This dissertation describes the development of a SPECT system for small animal imaging called InSPECT. In Paper I, determination of the reconstructed resolution for a prototype setup with a video-based detector system is discussed, and in Paper II, construction of the InSPECT system with eight separate video detectors is described. A fusible metal, Rose’s metal, was used to cast the centre bore, in which platinum pinholes were mounted. The cast pieces could adequately shield the detectors and could be machined with a high precision. Thus, Rose’s metal, which is relatively inexpensive, could be employed for pinhole collimation but would lead to image characteristics that are less favourable than those achievable using gold or platinum pinholes. In Paper III, we present an evaluation of the performance of Rose’s metal pinholes and a comparison with other pinhole materials.<br/>Monte Carlo-based computer models can be utilised to simulate the image formation process and can enable expensive and time-consuming instrumentation changes to be evaluated prior to building prototypes. In Paper IV, we discuss the implementation of a cadmium zinc telluride (CZT) semiconductor detector model in the Monte Carlo program SIMIND. The accuracy of the model was confirmed by comparing its results to measurements. In Paper V, we address the use of the CZT model in an SIMIND-based maximum-likelihood–expectation-maximisation iterative reconstruction of the measured data. The images reconstructed using the computer model enabled the quantification of the total activity without requiring calibration of the detector count per unit second per unit activity. In Paper VI, we describe the simulation of a dedicated SPECT scanner that employs 19 semiconductor detector–pinhole units for myocardial perfusion imaging. Compared to conventional SPECT devices, this camera is more efficient, and the efficiency is often traded for a reduction in imaging times and patient doses. An alternative use of the efficiency is to use smaller pinhole which yields better spatial resolution in the projections. No increase in contrast-to-noise was seen for smaller pinholes since any increase in contrast was also accompanied by an equal increase in noise. Also, changes in transmurality affected the CNR to a greater extent than did changes in lesion extent. <br/>}},
  author       = {{Peterson, Mikael}},
  isbn         = {{978-91-7753-378-8}},
  keywords     = {{Pinhole SPECT tomography; Nuclear medicine imaging; Monte Carlo-based image reconstruction}},
  language     = {{eng}},
  publisher    = {{Lund University, Faculty of Science, Department of Medical Radiation Physics}},
  school       = {{Lund University}},
  title        = {{SPECT Imaging using Pinhole Collimation : System Design and Simulation Studies for Pre-Clinical and Clinical Imaging}},
  url          = {{https://lup.lub.lu.se/search/files/30953468/Mikael_Peterson_KAPPAN_inkl_omslag.pdf}},
  year         = {{2017}},
}