Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Seasonal migration patterns of Siberian Rubythroat (Calliope calliope) facing the Qinghai–Tibet Plateau

Zhao, Tianhao ; Heim, Wieland ; Nussbaumer, Raphaël ; van Toor, Mariëlle ; Zhang, Guoming ; Andersson, Arne LU orcid ; Bäckman, Johan LU orcid ; Liu, Zongzhuang ; Song, Gang and Hellström, Magnus , et al. (2024) In Movement Ecology 12.
Abstract

Background: Small songbirds respond and adapt to various geographical barriers during their annual migration. Global flyways reveal the diverse migration strategies in response to different geographical barriers, among which are high-elevation plateaus. However, few studies have been focused on the largest and highest plateau in the world, the Qinghai–Tibet Plateau (QTP) which poses a significant barrier to migratory passerines. The present study explored the annual migration routes and strategies of a population of Siberian Rubythroats (Calliope calliope) that breed on the north-eastern edge of the QTP. Methods: Over the period from 2021 to 2023, we applied light-level geolocators (13 deployed, seven recollected), archival GPS tags (45... (More)

Background: Small songbirds respond and adapt to various geographical barriers during their annual migration. Global flyways reveal the diverse migration strategies in response to different geographical barriers, among which are high-elevation plateaus. However, few studies have been focused on the largest and highest plateau in the world, the Qinghai–Tibet Plateau (QTP) which poses a significant barrier to migratory passerines. The present study explored the annual migration routes and strategies of a population of Siberian Rubythroats (Calliope calliope) that breed on the north-eastern edge of the QTP. Methods: Over the period from 2021 to 2023, we applied light-level geolocators (13 deployed, seven recollected), archival GPS tags (45 deployed, 17 recollected), and CAnMove multi-sensor loggers (with barometer, accelerometer, thermometer, and light sensor, 20 deployed, six recollected) to adult males from the breeding population of Siberian Rubythroat on the QTP. Here we describe the migratory routes and phenology extracted or inferred from the GPS and multi-sensor logger data, and used a combination of accelerometric and barometric data to describe the elevational migration pattern, flight altitude, and flight duration. All light-level geolocators failed to collect suitable data. Results: Both GPS locations and positions derived from pressure-based inference revealed that during autumn, the migration route detoured from the bee-line between breeding and wintering grounds, leading to a gradual elevational decrease. The spring route was more direct, with more flights over mountainous areas in western China. This different migration route during spring probably reflects a strategy for faster migration, which corresponds with more frequent long nocturnal migration flights and shorter stopovers during spring migration than in autumn. The average flight altitude (1856 ± 781 m above sea level) was correlated with ground elevation but did not differ between the seasons. Conclusions: Our finding indicates strong, season-dependent impact of the Qinghai–Tibet Plateau on shaping passerine migration strategies. We hereby call for more attention to the unexplored central-China flyway to extend our knowledge on the environment-migration interaction among small passerines.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; ; ; ; ; ; and (Less)
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Archival GPS, Central-China flyway, Flight altitude, Geographical barriers, Geolocation, GeoPressureR, Loop migration, Molt migration, Multi-sensor logger
in
Movement Ecology
volume
12
article number
54
publisher
BioMed Central (BMC)
external identifiers
  • pmid:39090724
  • scopus:85200263521
ISSN
2051-3933
DOI
10.1186/s40462-024-00495-5
language
English
LU publication?
yes
additional info
Publisher Copyright: © The Author(s) 2024.
id
de8e378b-4aa4-4293-b8c5-b76254c03114
date added to LUP
2024-08-26 11:52:06
date last changed
2024-09-09 13:04:22
@article{de8e378b-4aa4-4293-b8c5-b76254c03114,
  abstract     = {{<p>Background: Small songbirds respond and adapt to various geographical barriers during their annual migration. Global flyways reveal the diverse migration strategies in response to different geographical barriers, among which are high-elevation plateaus. However, few studies have been focused on the largest and highest plateau in the world, the Qinghai–Tibet Plateau (QTP) which poses a significant barrier to migratory passerines. The present study explored the annual migration routes and strategies of a population of Siberian Rubythroats (Calliope calliope) that breed on the north-eastern edge of the QTP. Methods: Over the period from 2021 to 2023, we applied light-level geolocators (13 deployed, seven recollected), archival GPS tags (45 deployed, 17 recollected), and CAnMove multi-sensor loggers (with barometer, accelerometer, thermometer, and light sensor, 20 deployed, six recollected) to adult males from the breeding population of Siberian Rubythroat on the QTP. Here we describe the migratory routes and phenology extracted or inferred from the GPS and multi-sensor logger data, and used a combination of accelerometric and barometric data to describe the elevational migration pattern, flight altitude, and flight duration. All light-level geolocators failed to collect suitable data. Results: Both GPS locations and positions derived from pressure-based inference revealed that during autumn, the migration route detoured from the bee-line between breeding and wintering grounds, leading to a gradual elevational decrease. The spring route was more direct, with more flights over mountainous areas in western China. This different migration route during spring probably reflects a strategy for faster migration, which corresponds with more frequent long nocturnal migration flights and shorter stopovers during spring migration than in autumn. The average flight altitude (1856 ± 781 m above sea level) was correlated with ground elevation but did not differ between the seasons. Conclusions: Our finding indicates strong, season-dependent impact of the Qinghai–Tibet Plateau on shaping passerine migration strategies. We hereby call for more attention to the unexplored central-China flyway to extend our knowledge on the environment-migration interaction among small passerines.</p>}},
  author       = {{Zhao, Tianhao and Heim, Wieland and Nussbaumer, Raphaël and van Toor, Mariëlle and Zhang, Guoming and Andersson, Arne and Bäckman, Johan and Liu, Zongzhuang and Song, Gang and Hellström, Magnus and Roved, Jacob and Liu, Yang and Bensch, Staffan and Wertheim, Bregje and Lei, Fumin and Helm, Barbara}},
  issn         = {{2051-3933}},
  keywords     = {{Archival GPS; Central-China flyway; Flight altitude; Geographical barriers; Geolocation; GeoPressureR; Loop migration; Molt migration; Multi-sensor logger}},
  language     = {{eng}},
  month        = {{08}},
  publisher    = {{BioMed Central (BMC)}},
  series       = {{Movement Ecology}},
  title        = {{Seasonal migration patterns of Siberian Rubythroat (Calliope calliope) facing the Qinghai–Tibet Plateau}},
  url          = {{http://dx.doi.org/10.1186/s40462-024-00495-5}},
  doi          = {{10.1186/s40462-024-00495-5}},
  volume       = {{12}},
  year         = {{2024}},
}