Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Binary acoustic trapping in a glass capillary

Fornell, Anna LU ; Baasch, Thierry LU ; Johannesson, Carl LU ; Nilsson, Johan LU and Tenje, Maria LU (2021) In Journal of Physics D: Applied Physics 54(35).
Abstract

Acoustic trapping is a useful method for handling biological samples in microfluidic systems. The aim of this work is twofold: first to investigate the physics behind acoustic trapping in a glass capillary and secondly to perform binary acoustic trapping. The latter is achieved by increasing the density of the fluid in the trapping channel. The trapping device consisted of a glass capillary with a rectangular inner cross-section (height 200 µm width 2000 µm) equipped with a small piezoelectric transducer. The piezoelectric transducer was actuated at 4 MHz to generate a localised half-wavelength acoustic standing-wave-field in the capillary, comprising of a pressure field and a velocity field. Under acoustic actuation, only particles... (More)

Acoustic trapping is a useful method for handling biological samples in microfluidic systems. The aim of this work is twofold: first to investigate the physics behind acoustic trapping in a glass capillary and secondly to perform binary acoustic trapping. The latter is achieved by increasing the density of the fluid in the trapping channel. The trapping device consisted of a glass capillary with a rectangular inner cross-section (height 200 µm width 2000 µm) equipped with a small piezoelectric transducer. The piezoelectric transducer was actuated at 4 MHz to generate a localised half-wavelength acoustic standing-wave-field in the capillary, comprising of a pressure field and a velocity field. Under acoustic actuation, only particles with higher density than the fluid, i.e. having a positive dipole scattering coefficient, were trapped in the flow direction. The numerical and analytical modelling of the system show that the trapping force which retains the particles against the flow depends only on the dipole scattering coefficient in the pressure nodal plane of the acoustic field. The analytical model also reveals that the retention force is proportional to the dipole scattering coefficient, which agrees with our experimental findings. Next, we showed that in a mixture of melamine particles and polystyrene particles in a high-density fluid it is possible to selectively trap melamine particles, since melamine particles have higher density than polystyrene particles.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
acoustofluidics, separation, trapping, ultrasound
in
Journal of Physics D: Applied Physics
volume
54
issue
35
article number
355401
publisher
IOP Publishing
external identifiers
  • scopus:85109176298
ISSN
0022-3727
DOI
10.1088/1361-6463/ac0841
language
English
LU publication?
yes
id
e164a9ba-6ffb-42f1-9439-82be5dbcb425
date added to LUP
2021-08-17 14:15:16
date last changed
2022-04-27 03:14:58
@article{e164a9ba-6ffb-42f1-9439-82be5dbcb425,
  abstract     = {{<p>Acoustic trapping is a useful method for handling biological samples in microfluidic systems. The aim of this work is twofold: first to investigate the physics behind acoustic trapping in a glass capillary and secondly to perform binary acoustic trapping. The latter is achieved by increasing the density of the fluid in the trapping channel. The trapping device consisted of a glass capillary with a rectangular inner cross-section (height 200 µm width 2000 µm) equipped with a small piezoelectric transducer. The piezoelectric transducer was actuated at 4 MHz to generate a localised half-wavelength acoustic standing-wave-field in the capillary, comprising of a pressure field and a velocity field. Under acoustic actuation, only particles with higher density than the fluid, i.e. having a positive dipole scattering coefficient, were trapped in the flow direction. The numerical and analytical modelling of the system show that the trapping force which retains the particles against the flow depends only on the dipole scattering coefficient in the pressure nodal plane of the acoustic field. The analytical model also reveals that the retention force is proportional to the dipole scattering coefficient, which agrees with our experimental findings. Next, we showed that in a mixture of melamine particles and polystyrene particles in a high-density fluid it is possible to selectively trap melamine particles, since melamine particles have higher density than polystyrene particles.</p>}},
  author       = {{Fornell, Anna and Baasch, Thierry and Johannesson, Carl and Nilsson, Johan and Tenje, Maria}},
  issn         = {{0022-3727}},
  keywords     = {{acoustofluidics; separation; trapping; ultrasound}},
  language     = {{eng}},
  month        = {{09}},
  number       = {{35}},
  publisher    = {{IOP Publishing}},
  series       = {{Journal of Physics D: Applied Physics}},
  title        = {{Binary acoustic trapping in a glass capillary}},
  url          = {{http://dx.doi.org/10.1088/1361-6463/ac0841}},
  doi          = {{10.1088/1361-6463/ac0841}},
  volume       = {{54}},
  year         = {{2021}},
}