Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Development and applications of NMR relaxation methods to study protein and ligand dynamics.

Wernersson, Sven LU (2022)
Abstract
This thesis involves the study of proteins. These molecules exist in many variants, and perform most of our bodily functions. This includes signaling (for example the presence of capsaicin, which makes food spicy), molecular transport (including oxygen), catalysis (including food digestion) and part of our body structure (such as muscles). So it is perhaps not too strange that an overwhelming fraction of the medicines used and developed today target different proteins. The building blocks of proteins are 20 different amino acids. These amino acids can be linked in any conceivable combination and length to chains. Each protein is defined by their unique chain of amino acids. During the creation of each chain, it spontaneously folds due to... (More)
This thesis involves the study of proteins. These molecules exist in many variants, and perform most of our bodily functions. This includes signaling (for example the presence of capsaicin, which makes food spicy), molecular transport (including oxygen), catalysis (including food digestion) and part of our body structure (such as muscles). So it is perhaps not too strange that an overwhelming fraction of the medicines used and developed today target different proteins. The building blocks of proteins are 20 different amino acids. These amino acids can be linked in any conceivable combination and length to chains. Each protein is defined by their unique chain of amino acids. During the creation of each chain, it spontaneously folds due to the electrochemical forces that are always present between amino acids. The result of this folding process is called the protein structure, which help proteins to perform their tasks. To fully understand protein function, knowledge of the protein structure needs to be complemented with knowledge of protein dynamics, the inherent flexibility, and movements of the structure. The dynamic properties of proteins is the focus of this thesis, and the pharmaceutical industry its likeliest area of application.

In the thesis I studied three different proteins. Galectin-3 is a protein that binds to sugar molecules, which can be found both inside and outside of cells. Problems with this protein are connected to a variety of diseases including cancer, fibrosis, and various forms of dementia. The protein BRD4 helps to control protein production in cells. This gives it a large impact on cancer progression and several types of cardiovascular diseases. When it comes to Ubiquitin, one of its main purposes is to signal which proteins have served their purpose and are to be degraded and recycled. In the thesis I study Ubiquitin only indirectly, as I use it as a model system given the wealth of previously published data to compare my results with.

The main experimental method that I used is called Nuclear Magnetic Resonance spectroscopy (NMR), which share the same underlying technology as Magnetic Resonance Imaging (MRI) used in hospitals. My work also utilises results from other experimental methods, as different methods often complement each other. Important methods include Isothermal Calorimetry (ITC), which allows for measurements of the energy difference when two molecules bind to each other. Molecular Dynamics (MD) simulations, are a form of computer calculations that studies protein dynamics and interactions in atomistic detail. X-ray crystallography, uses high energy X-ray beams to discover protein structures.

A total of five articles are presented in this thesis. The topic of the first article is the protein BRD4. It is a very large protein, with an amino acid chain of up to 1362 residues long. BRD4 is considered to have a large potential as a target for cancer treatments, but its length makes it hard to study. In the article we look at the impact on the protein dynamics from restricting studies of BRD4 to protein fragments of different lengths. The second article is a study on the interaction between Galectin-3 and a small molecule (similar to a pharmaceutical) from the perspective of the small molecule. This is accomplished by directly measuring on the fluorine atoms located on the small molecule. The third article is a study of the impact on interaction between Galectin-3 and a small molecule in the presence of Dimethyl Sulfoxide (DMSO). The largest effect of DMSO is an increased viscosity, which makes the interaction slower. The fourth and fifth articles presents a method for faster measurements of protein dynamics using NMR, which is especially useful for unstable and low-concentration samples.

My hope is that this thesis work helps us gain an improved understanding on how different parts of proteins affect each other and on how proteins interact with small molecules (especially regarding BRD4 and Galectin-3). In addition, I hope that this work has provided future scientists additional tools for continued studies of proteins and their dynamics. (Less)
Abstract (Swedish)
I denna avhandling studeras proteiner. Dessa molekyler finns i många varianter, och tillsammans utför de stora delar av kroppens funktioner. Detta inkluderar olika former av signalering (till exempel närvaro av kapsaicin som ger mat hetta), molekyltransport (som till exempel syre), katalys (av till exempel matnedbrytning) och delar av kroppens struktur (som till exempel muskler). Det är därmed kanske inte så konstigt att de flesta läkemedel som används och är under utveckling idag är utformade för att påverka proteiner. Proteiners byggstenar är 20 olika aminosyror. Dessa molekyler kan sammanlänkas i varje tänkbar kombination och längd till kedjor. Varje protein definieras av sin unika kedja. Efter att varje kedja skapats så börjar den... (More)
I denna avhandling studeras proteiner. Dessa molekyler finns i många varianter, och tillsammans utför de stora delar av kroppens funktioner. Detta inkluderar olika former av signalering (till exempel närvaro av kapsaicin som ger mat hetta), molekyltransport (som till exempel syre), katalys (av till exempel matnedbrytning) och delar av kroppens struktur (som till exempel muskler). Det är därmed kanske inte så konstigt att de flesta läkemedel som används och är under utveckling idag är utformade för att påverka proteiner. Proteiners byggstenar är 20 olika aminosyror. Dessa molekyler kan sammanlänkas i varje tänkbar kombination och längd till kedjor. Varje protein definieras av sin unika kedja. Efter att varje kedja skapats så börjar den spontant att vikas ihop, på grund av de elektrokemiska krafter som är närvarande mellan aminosyror. Resultatet av vikningen kallas för proteinets struktur, vilken hjälper proteinet att uppfylla dess uppgifter. För att fullt förstå proteiners funktion så behöver man utöver strukturen även studera dess dynamik, d.v.s. flexibiliteten och rörligheten i strukturen. Det är proteiners dynamiska egenskaper som är i fokus för denna avhandling, där läkemedelsutveckling är den troligaste tillämpningen av min forskning.

I avhandlingen studerar jag tre olika proteiner. Galektin-3 är ett protein som binder till sockermolekyler, vilka återfinns både inuti och utanpå celler. Problem med detta protein är kopplat till sjukdomar som cancer, fibros och diverse demenssjukdomar. Proteinet BRD4 hjälper till att styra kroppens produktion av proteiner. Detta protein har stor påverkan vid cancer och flera former av hjärt - och kärlsjukdomar. Proteinet Ubiquitin används bland annat för att signalera vilka proteiner som slutfört sina uppgifter och därmed ska brytas ner för att ge material till andra proteiner. Detta protein studerar jag indirekt, främst använder jag det för metodutveckling då det finns tidigare data att jämföra mina resultat med.

Den huvudsakliga metod jag använt för att studera proteindynamik kallas kärnmagnetisk resonansspektroskopi (NMR, Nuclear Magnetic Resonance), och är i grunden samma teknik som används för magnetröntgenkameror på sjukhus. Jag använder även resultat från andra mätmetoder, då de ofta kompletterar NMR spektroskopi. Här bör nämnas isotermisk titreringskalorimetri (ITC, Isothermal Titration Calorimetry), vilket används för att mäta energin-förändringen vid inbindningen av två molekyler till varandra. Molekyldynamik-simuleringar (MD), är en form av datorberäkningar som i hög detaljnivå simulerar proteiner och deras interaktioner. Röntgen-kristallografi utreder molekylers struktur med hjälp av röntgen-strålar.

I avhandlingen presenteras fem artiklar. Den första artikeln handlar om proteinet BRD4 som nämndes ovan. Det är ett väldigt stort protein, med en kedja upp till 1362 sammanlänkade aminosyror. BRD4 har stor potential för cancer-behandling, men dess längd gör det svårt att studera. I artikeln studerar vi konsekvenserna för proteindynamiken av att begränsa sig till proteinfragment av olika längd. Den andra artikeln är en studie om interaktionen mellan Galektin-3 och en småmolekyl (som liknar läkemedel), ur småmolekylens perspektiv. Detta genom att mäta direkt på floratomerna som sitter på småmolekylen. Den tredje artikeln studerar interaktionen mellan Galektin-3 och en småmolekyl, i närvaro av olika mängder DMSO (dimetylsulfoxid). Största effekten av DMSO är en högre viskositet, som gör protein-småmolekyl interaktionen långsammare. Den fjärde och femte artikeln presenterar en metod för att snabbare mäta proteindynamik med hjälp av NMR, vilket är viktigt för instabila och lågkoncentrerade prover.

Förhoppningen är att detta arbete hjälper oss få en utökad förståelse av hur olika delar av proteiner påverkar varandra och hur proteiner interagerar med småmolekyler (särskilt för BRD4 och Galektin-3). Det är även min förhoppning att detta arbete gett framtida forskare mer verktyg för fortsatta studier av proteiner och deras dynamik. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Prof. Orekhov, Vladislav, Gothenburg University, Sweden
organization
alternative title
Utveckling och tillämpningar av NMR-relaxationsmetoder för att studera protein och liganddynamik.
publishing date
type
Thesis
publication status
published
subject
keywords
Nuclear magnetic resonance, NMR, NMR relaxation, Method development, Protein dynamics, BRD4, Galectin 3, Kärnmagnetisk resonansspektroskopi, proteindynamik, Metodutveckling, NMR, BRD4, Galektin 3
pages
194 pages
publisher
Biophysical Chemistry (LTH), Lund University
defense location
Lecture hall KC:C, Kemicentrum, Naturvetarvägen 14, Faculty of Engineering LTH, Lund University, Lund
defense date
2022-05-20 13:00:00
ISBN
978-91-7422-882-3
978-91-7422-883-0
language
English
LU publication?
yes
id
e1a8d3a0-be29-4377-89f1-d698280d2ac9
date added to LUP
2022-04-26 10:13:19
date last changed
2022-04-28 08:04:27
@phdthesis{e1a8d3a0-be29-4377-89f1-d698280d2ac9,
  abstract     = {{This thesis involves the study of proteins. These molecules exist in many variants, and perform most of our bodily functions. This includes signaling (for example the presence of capsaicin, which makes food spicy), molecular transport (including oxygen), catalysis (including food digestion) and part of our body structure (such as muscles). So it is perhaps not too strange that an overwhelming fraction of the medicines used and developed today target different proteins. The building blocks of proteins are 20 different amino acids. These amino acids can be linked in any conceivable combination and length to chains. Each protein is defined by their unique chain of amino acids. During the creation of each chain, it spontaneously folds due to the electrochemical forces that are always present between amino acids. The result of this folding process is called the protein structure, which help proteins to perform their tasks. To fully understand protein function, knowledge of the protein structure needs to be complemented with knowledge of protein dynamics, the inherent flexibility, and movements of the structure. The dynamic properties of proteins is the focus of this thesis, and the pharmaceutical industry its likeliest area of application. <br/><br/>In the thesis I studied three different proteins. Galectin-3 is a protein that binds to sugar molecules, which can be found both inside and outside of cells. Problems with this protein are connected to a variety of diseases including cancer, fibrosis, and various forms of dementia. The protein BRD4 helps to control protein production in cells. This gives it a large impact on cancer progression and several types of cardiovascular diseases. When it comes to Ubiquitin, one of its main purposes is to signal which proteins have served their purpose and are to be degraded and recycled. In the thesis I study Ubiquitin only indirectly, as I use it as a model system given the wealth of previously published data to compare my results with. <br/><br/>The main experimental method that I used is called Nuclear Magnetic Resonance spectroscopy (NMR), which share the same underlying technology as Magnetic Resonance Imaging (MRI) used in hospitals. My work also utilises results from other experimental methods, as different methods often complement each other. Important methods include Isothermal Calorimetry (ITC), which allows for measurements of the energy difference when two molecules bind to each other. Molecular Dynamics (MD) simulations, are a form of computer calculations that studies protein dynamics and interactions in atomistic detail. X-ray crystallography, uses high energy X-ray beams to discover protein structures. <br/><br/>A total of five articles are presented in this thesis. The topic of the first article is the protein BRD4. It is a very large protein, with an amino acid chain of up to 1362 residues long. BRD4 is considered to have a large potential as a target for cancer treatments, but its length makes it hard to study. In the article we look at the impact on the protein dynamics from restricting studies of BRD4 to protein fragments of different lengths. The second article is a study on the interaction between Galectin-3 and a small molecule (similar to a pharmaceutical) from the perspective of the small molecule. This is accomplished by directly measuring on the fluorine atoms located on the small molecule. The third article is a study of the impact on interaction between Galectin-3 and a small molecule in the presence of Dimethyl Sulfoxide (DMSO). The largest effect of DMSO is an increased viscosity, which makes the interaction slower. The fourth and fifth articles presents a method for faster measurements of protein dynamics using NMR, which is especially useful for unstable and low-concentration samples. <br/><br/>My hope is that this thesis work helps us gain an improved understanding on how different parts of proteins affect each other and on how proteins interact with small molecules (especially regarding BRD4 and Galectin-3). In addition, I hope that this work has provided future scientists additional tools for continued studies of proteins and their dynamics.}},
  author       = {{Wernersson, Sven}},
  isbn         = {{978-91-7422-882-3}},
  keywords     = {{Nuclear magnetic resonance; NMR; NMR relaxation; Method development; Protein dynamics; BRD4; Galectin 3; Kärnmagnetisk resonansspektroskopi; proteindynamik; Metodutveckling; NMR; BRD4; Galektin 3}},
  language     = {{eng}},
  month        = {{04}},
  publisher    = {{Biophysical Chemistry (LTH), Lund University}},
  school       = {{Lund University}},
  title        = {{Development and applications of NMR relaxation methods to study protein and ligand dynamics.}},
  url          = {{https://lup.lub.lu.se/search/files/117230159/PhD_thesis_Sven_Wernersson_.pdf}},
  year         = {{2022}},
}