On the Boundary Value Problem for p-parabolic Equations
(2009) International Conference on Operator Theory, Analysis and Mathematical Physics (OTAMP 2006) 186. p.229-239- Abstract
- We derive a fundamental existence theorem for the equation u(t)'(x,t) - div(vertical bar del(x)u vertical bar(p-2)del(x)u) = 0 with continuous initial and boundary data in a space-tithe cylinder.
    Please use this url to cite or link to this publication:
    https://lup.lub.lu.se/record/1312661
- author
- Ivert, Per-Anders LU
- organization
- publishing date
- 2009
- type
- Chapter in Book/Report/Conference proceeding
- publication status
- published
- subject
- keywords
- Degenerate parabolic equations, p-parabolic functions
- host publication
- Methods of Spectral Analysis in Mathematical Physics (Operator Theory: Advances and Applications)
- volume
- 186
- pages
- 229 - 239
- publisher
- Birkhäuser
- conference name
- International Conference on Operator Theory, Analysis and Mathematical Physics (OTAMP 2006)
- conference location
- Lund, Sweden
- conference dates
- 0001-01-02
- external identifiers
- 
                - wos:000262459300011
- scopus:84939877533
 
- ISBN
- 978-3-7643-8754-9
- language
- English
- LU publication?
- yes
- id
- e423d5f6-accb-4379-8fa9-e839a8020088 (old id 1312661)
- date added to LUP
- 2016-04-04 10:55:27
- date last changed
- 2025-10-14 12:43:43
@inproceedings{e423d5f6-accb-4379-8fa9-e839a8020088,
  abstract     = {{We derive a fundamental existence theorem for the equation u(t)'(x,t) - div(vertical bar del(x)u vertical bar(p-2)del(x)u) = 0 with continuous initial and boundary data in a space-tithe cylinder.}},
  author       = {{Ivert, Per-Anders}},
  booktitle    = {{Methods of Spectral Analysis in Mathematical Physics (Operator Theory: Advances and Applications)}},
  isbn         = {{978-3-7643-8754-9}},
  keywords     = {{Degenerate parabolic equations; p-parabolic functions}},
  language     = {{eng}},
  pages        = {{229--239}},
  publisher    = {{Birkhäuser}},
  title        = {{On the Boundary Value Problem for p-parabolic Equations}},
  volume       = {{186}},
  year         = {{2009}},
}