Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

High-throughput metabarcoding reveals the effect of physicochemical soil properties on soil and litter biodiversity and community turnover across Amazonia

Ritter, Camila D. ; Zizka, Alexander ; Roger, Fabian LU ; Tuomisto, Hanna ; Barnes, Christopher ; Nilsson, R. Henrik and Antonelli, Alexandre (2018) In PeerJ 2018(9).
Abstract

Background. Knowledge on the globally outstanding Amazonian biodiversity and its environmental determinants stems almost exclusively from aboveground organisms, notably plants. In contrast, the environmental factors and habitat preferences that drive diversity patterns for micro-organisms in the ground remain elusive, despite the fact that micro-organisms constitute the overwhelming majority of life forms in any given location, in terms of both diversity and abundance. Here we address how the diversity and community turnover of operational taxonomic units (OTU) of organisms in soil and litter respond to soil physicochemical properties; whether OTU diversities and community composition in soil and litter are correlated with each other;... (More)

Background. Knowledge on the globally outstanding Amazonian biodiversity and its environmental determinants stems almost exclusively from aboveground organisms, notably plants. In contrast, the environmental factors and habitat preferences that drive diversity patterns for micro-organisms in the ground remain elusive, despite the fact that micro-organisms constitute the overwhelming majority of life forms in any given location, in terms of both diversity and abundance. Here we address how the diversity and community turnover of operational taxonomic units (OTU) of organisms in soil and litter respond to soil physicochemical properties; whether OTU diversities and community composition in soil and litter are correlated with each other; and whether they respond in a similar way to soil properties. Methods. We used recently inferred OTUs from high-throughput metabarcoding of the 16S (prokaryotes) and 18S (eukaryotes) genes to estimate OTU diversity (OTU richness and effective number of OTUs) and community composition for prokaryotes and eukaryotes in soil and litter across four localities in Brazilian Amazonia. All analyses were run separately for prokaryote and eukaryote OTUs, and for each group using both presence-absence and abundance data. Combining these with novel data on soil chemical and physical properties, we identify abiotic correlates of soil and litter organism diversity and community structure using regression, ordination, and variance partitioning analysis. Results. Soil organic carbon content was the strongest factor explaining OTU diversity (negative correlation) and pH was the strongest factor explaining community turnover for prokaryotes and eukaryotes in both soil and litter. We found significant effects also for other soil variables, including both chemical and physical properties. The correlation between OTU diversity in litter and in soil was non-significant for eukaryotes and weak for prokaryotes. The community compositions of both prokaryotes and eukaryotes were more separated among habitat types (terra-firme, várzea, igapó and campina) than between substrates (soil and litter). Discussion. In spite of the limited sampling (four localities, 39 plots), our results provide a broad-scale view of the physical and chemical correlations of soil and litter biodiversity in a longitudinal transect across the world’s largest rainforest. Our methods help to understand links between soil properties, OTU diversity patterns, and community composition and turnover. The lack of strong correlation between OTU diversity in litter and in soil suggests independence of diversity drives of these substrates and highlights the importance of including both measures in biodiversity assessments. Massive sequencing of soil and litter samples holds the potential to complement traditional biological inventories in advancing our understanding of the factors affecting tropical diversity.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Brazil, Eukaryotes, Operational Taxonomic Units (OTUs), Prokaryotes, Rainforest, Soil microorganisms
in
PeerJ
volume
2018
issue
9
article number
e5661
publisher
PeerJ
external identifiers
  • scopus:85054668316
  • pmid:30280033
ISSN
2167-8359
DOI
10.7717/peerj.5661
language
English
LU publication?
yes
id
e4827b0d-7d5d-426a-b479-7ba2686dbd0f
date added to LUP
2018-11-13 14:42:08
date last changed
2024-05-27 21:23:50
@article{e4827b0d-7d5d-426a-b479-7ba2686dbd0f,
  abstract     = {{<p>Background. Knowledge on the globally outstanding Amazonian biodiversity and its environmental determinants stems almost exclusively from aboveground organisms, notably plants. In contrast, the environmental factors and habitat preferences that drive diversity patterns for micro-organisms in the ground remain elusive, despite the fact that micro-organisms constitute the overwhelming majority of life forms in any given location, in terms of both diversity and abundance. Here we address how the diversity and community turnover of operational taxonomic units (OTU) of organisms in soil and litter respond to soil physicochemical properties; whether OTU diversities and community composition in soil and litter are correlated with each other; and whether they respond in a similar way to soil properties. Methods. We used recently inferred OTUs from high-throughput metabarcoding of the 16S (prokaryotes) and 18S (eukaryotes) genes to estimate OTU diversity (OTU richness and effective number of OTUs) and community composition for prokaryotes and eukaryotes in soil and litter across four localities in Brazilian Amazonia. All analyses were run separately for prokaryote and eukaryote OTUs, and for each group using both presence-absence and abundance data. Combining these with novel data on soil chemical and physical properties, we identify abiotic correlates of soil and litter organism diversity and community structure using regression, ordination, and variance partitioning analysis. Results. Soil organic carbon content was the strongest factor explaining OTU diversity (negative correlation) and pH was the strongest factor explaining community turnover for prokaryotes and eukaryotes in both soil and litter. We found significant effects also for other soil variables, including both chemical and physical properties. The correlation between OTU diversity in litter and in soil was non-significant for eukaryotes and weak for prokaryotes. The community compositions of both prokaryotes and eukaryotes were more separated among habitat types (terra-firme, várzea, igapó and campina) than between substrates (soil and litter). Discussion. In spite of the limited sampling (four localities, 39 plots), our results provide a broad-scale view of the physical and chemical correlations of soil and litter biodiversity in a longitudinal transect across the world’s largest rainforest. Our methods help to understand links between soil properties, OTU diversity patterns, and community composition and turnover. The lack of strong correlation between OTU diversity in litter and in soil suggests independence of diversity drives of these substrates and highlights the importance of including both measures in biodiversity assessments. Massive sequencing of soil and litter samples holds the potential to complement traditional biological inventories in advancing our understanding of the factors affecting tropical diversity.</p>}},
  author       = {{Ritter, Camila D. and Zizka, Alexander and Roger, Fabian and Tuomisto, Hanna and Barnes, Christopher and Nilsson, R. Henrik and Antonelli, Alexandre}},
  issn         = {{2167-8359}},
  keywords     = {{Brazil; Eukaryotes; Operational Taxonomic Units (OTUs); Prokaryotes; Rainforest; Soil microorganisms}},
  language     = {{eng}},
  month        = {{09}},
  number       = {{9}},
  publisher    = {{PeerJ}},
  series       = {{PeerJ}},
  title        = {{High-throughput metabarcoding reveals the effect of physicochemical soil properties on soil and litter biodiversity and community turnover across Amazonia}},
  url          = {{http://dx.doi.org/10.7717/peerj.5661}},
  doi          = {{10.7717/peerj.5661}},
  volume       = {{2018}},
  year         = {{2018}},
}