Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Dynamics of fungal and bacterial groups and their carbon sources during the growing season of maize in a long-term experiment

Shahbaz, Muhammad LU ; Kätterer, Thomas ; Thornton, Barry and Börjesson, Gunnar (2020) In Biology and Fertility of Soils
Abstract
The relative contribution of different microbial groups to soil organic matter (SOM) turnover and utilisation of rhizodeposits during a cropping season has remained largely unknown. We used a long-term field experiment (started in 1956), in which C3 crops were replaced with C4 silage maize in 2000, to investigate dynamics of fungi and bacterial groups and their utilisation of ‘young-C4’ and ‘old-C3’ SOM-derived resource every second week during the cropping season (June–Oct). Treatments include bare fallow, unfertilised, fertilised with mineral N and fertilised with farmyard manure (FYM) addition. Extracted soil phospholipid fatty acids (PLFAs) were pooled into Gram-positive, Gram-negative bacteria and fungi (18:2ω6,9) groups and their... (More)
The relative contribution of different microbial groups to soil organic matter (SOM) turnover and utilisation of rhizodeposits during a cropping season has remained largely unknown. We used a long-term field experiment (started in 1956), in which C3 crops were replaced with C4 silage maize in 2000, to investigate dynamics of fungi and bacterial groups and their utilisation of ‘young-C4’ and ‘old-C3’ SOM-derived resource every second week during the cropping season (June–Oct). Treatments include bare fallow, unfertilised, fertilised with mineral N and fertilised with farmyard manure (FYM) addition. Extracted soil phospholipid fatty acids (PLFAs) were pooled into Gram-positive, Gram-negative bacteria and fungi (18:2ω6,9) groups and their δ13C values determined. Total PLFAs amount correlated to the SOM contents (highest in FYM) and increased over the cropping season in N-fertilised and FYM treatments. As a result of a peak in plant growth during a period with frequent rain events in August, δ13C of total PLFAs significantly increased from − 23.8 to − 21.6‰ and − 26.1 to − 24.7‰, in N-fertilised and FYM addition, respectively. This clearly indicated a shift in microbial utilisation from old to young SOM sources, which was linked to increased soil moisture contents and fungal biomass. The abundance of Gram-positive increased and that of Gram-negative bacteria decreased until August and vice versa thereafter. The mean δ13C values of individual microbial groups were highest in fungi (corresponding to their seasonal biomass variation) followed by Gram-positive and Gram-negative bacteria. The results clearly demonstrated that irrespective of fertilisation type, fungi were the main players in seasonal SOM dynamics and were strongly influenced by soil moisture and phenological stage of the maize (i.e. rhizodeposition). Disentangling these microbial controls on C resources utilisation will be crucial for understanding C cycling during a cropping season or on an ecosystem scale. (Less)
Please use this url to cite or link to this publication:
author
; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Biology and Fertility of Soils
publisher
Springer
external identifiers
  • scopus:85082952409
ISSN
0178-2762
DOI
10.1007/s00374-020-01454-z
language
English
LU publication?
yes
id
e6373342-df5b-4f9e-bcdb-7f6aeadf8fa8
date added to LUP
2020-03-27 10:26:17
date last changed
2022-04-18 21:19:03
@article{e6373342-df5b-4f9e-bcdb-7f6aeadf8fa8,
  abstract     = {{The relative contribution of different microbial groups to soil organic matter (SOM) turnover and utilisation of rhizodeposits during a cropping season has remained largely unknown. We used a long-term field experiment (started in 1956), in which C3 crops were replaced with C4 silage maize in 2000, to investigate dynamics of fungi and bacterial groups and their utilisation of ‘young-C4’ and ‘old-C3’ SOM-derived resource every second week during the cropping season (June–Oct). Treatments include bare fallow, unfertilised, fertilised with mineral N and fertilised with farmyard manure (FYM) addition. Extracted soil phospholipid fatty acids (PLFAs) were pooled into Gram-positive, Gram-negative bacteria and fungi (18:2ω6,9) groups and their δ13C values determined. Total PLFAs amount correlated to the SOM contents (highest in FYM) and increased over the cropping season in N-fertilised and FYM treatments. As a result of a peak in plant growth during a period with frequent rain events in August, δ13C of total PLFAs significantly increased from − 23.8 to − 21.6‰ and − 26.1 to − 24.7‰, in N-fertilised and FYM addition, respectively. This clearly indicated a shift in microbial utilisation from old to young SOM sources, which was linked to increased soil moisture contents and fungal biomass. The abundance of Gram-positive increased and that of Gram-negative bacteria decreased until August and vice versa thereafter. The mean δ13C values of individual microbial groups were highest in fungi (corresponding to their seasonal biomass variation) followed by Gram-positive and Gram-negative bacteria. The results clearly demonstrated that irrespective of fertilisation type, fungi were the main players in seasonal SOM dynamics and were strongly influenced by soil moisture and phenological stage of the maize (i.e. rhizodeposition). Disentangling these microbial controls on C resources utilisation will be crucial for understanding C cycling during a cropping season or on an ecosystem scale.}},
  author       = {{Shahbaz, Muhammad and Kätterer, Thomas and Thornton, Barry and Börjesson, Gunnar}},
  issn         = {{0178-2762}},
  language     = {{eng}},
  publisher    = {{Springer}},
  series       = {{Biology and Fertility of Soils}},
  title        = {{Dynamics of fungal and bacterial groups and their carbon sources during the growing season of maize in a long-term experiment}},
  url          = {{http://dx.doi.org/10.1007/s00374-020-01454-z}},
  doi          = {{10.1007/s00374-020-01454-z}},
  year         = {{2020}},
}