Advanced

Representation of dissolved organic carbon in the JULES land surface model (vn4.4-JULES-DOCM)

Nakhavali, Mahdi ; Friedlingstein, Pierre ; Lauerwald, Ronny ; Tang, Jing LU ; Chadburn, Sarah ; Camino-Serrano, Marta ; Guenet, Bertrand ; Harper, Anna ; Walmsley, David and Peichl, Matthias , et al. (2018) In Geoscientific Model Development 11(2). p.593-609
Abstract

Current global models of the carbon (C) cycle consider only vertical gas exchanges between terrestrial or oceanic reservoirs and the atmosphere, thus not considering the lateral transport of carbon from the continents to the oceans. Therefore, those models implicitly consider all of the C which is not respired to the atmosphere to be stored on land and hence overestimate the land C sink capability. A model that represents the whole continuum from atmosphere to land and into the ocean would provide a better understanding of the Earth's C cycle and hence more reliable historical or future projections. A first and critical step in that direction is to include processes representing the production and export of dissolved organic carbon in... (More)

Current global models of the carbon (C) cycle consider only vertical gas exchanges between terrestrial or oceanic reservoirs and the atmosphere, thus not considering the lateral transport of carbon from the continents to the oceans. Therefore, those models implicitly consider all of the C which is not respired to the atmosphere to be stored on land and hence overestimate the land C sink capability. A model that represents the whole continuum from atmosphere to land and into the ocean would provide a better understanding of the Earth's C cycle and hence more reliable historical or future projections. A first and critical step in that direction is to include processes representing the production and export of dissolved organic carbon in soils. Here we present an original representation of dissolved organic C (DOC) processes in the Joint UK Land Environment Simulator (JULES-DOCM) that integrates a representation of DOC production in terrestrial ecosystems based on the incomplete decomposition of organic matter, DOC decomposition within the soil column, and DOC export to the river network via leaching. The model performance is evaluated in five specific sites for which observations of soil DOC concentration are available. Results show that the model is able to reproduce the DOC concentration and controlling processes, including leaching to the riverine system, which is fundamental for integrating terrestrial and aquatic ecosystems. Future work should include the fate of exported DOC in the river system as well as DIC and POC export from soil.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and , et al. (More)
; ; ; ; ; ; ; ; ; and (Less)
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Geoscientific Model Development
volume
11
issue
2
pages
17 pages
publisher
Copernicus Gesellschaft mbH
external identifiers
  • scopus:85041909232
ISSN
1991-959X
DOI
10.5194/gmd-11-593-2018
language
English
LU publication?
no
id
e76aaef6-efeb-4c98-8017-6135490281b8
date added to LUP
2019-06-12 21:52:18
date last changed
2020-12-29 04:35:48
@article{e76aaef6-efeb-4c98-8017-6135490281b8,
  abstract     = {<p>Current global models of the carbon (C) cycle consider only vertical gas exchanges between terrestrial or oceanic reservoirs and the atmosphere, thus not considering the lateral transport of carbon from the continents to the oceans. Therefore, those models implicitly consider all of the C which is not respired to the atmosphere to be stored on land and hence overestimate the land C sink capability. A model that represents the whole continuum from atmosphere to land and into the ocean would provide a better understanding of the Earth's C cycle and hence more reliable historical or future projections. A first and critical step in that direction is to include processes representing the production and export of dissolved organic carbon in soils. Here we present an original representation of dissolved organic C (DOC) processes in the Joint UK Land Environment Simulator (JULES-DOCM) that integrates a representation of DOC production in terrestrial ecosystems based on the incomplete decomposition of organic matter, DOC decomposition within the soil column, and DOC export to the river network via leaching. The model performance is evaluated in five specific sites for which observations of soil DOC concentration are available. Results show that the model is able to reproduce the DOC concentration and controlling processes, including leaching to the riverine system, which is fundamental for integrating terrestrial and aquatic ecosystems. Future work should include the fate of exported DOC in the river system as well as DIC and POC export from soil.</p>},
  author       = {Nakhavali, Mahdi and Friedlingstein, Pierre and Lauerwald, Ronny and Tang, Jing and Chadburn, Sarah and Camino-Serrano, Marta and Guenet, Bertrand and Harper, Anna and Walmsley, David and Peichl, Matthias and Gielen, Bert},
  issn         = {1991-959X},
  language     = {eng},
  month        = {02},
  number       = {2},
  pages        = {593--609},
  publisher    = {Copernicus Gesellschaft mbH},
  series       = {Geoscientific Model Development},
  title        = {Representation of dissolved organic carbon in the JULES land surface model (vn4.4-JULES-DOCM)},
  url          = {http://dx.doi.org/10.5194/gmd-11-593-2018},
  doi          = {10.5194/gmd-11-593-2018},
  volume       = {11},
  year         = {2018},
}