Advanced

Single-ion conducting polymer electrolytes with alternating ionic mesogen-like moieties interconnected by poly(ethylene oxide) segments

Nederstedt, Hannes LU and Jannasch, Patric LU (2019) In Polymer 177. p.231-240
Abstract
Solid single-Li+-ion conducting polymer electrolytes are currently explored for safe high-temperature lithium batteries. In the present work we have prepared and studied materials based on alternating mesogen-like naphthalene sulfonate units interconnected by flexible poly(ethylene oxide) (PEO) segments in order to induce microphase separation and physical crosslinking. These segmented polymers were readily prepared in polycondensations of a naphthalene diol sulfonate and chain-end chlorinated PEO. The ionic content of the final materials was conveniently controlled by using PEOs of different molecular weights. Analysis by X-ray scattering showed a morphology with nanoscopic domains of naphthalene sulfonate units dispersed in a... (More)
Solid single-Li+-ion conducting polymer electrolytes are currently explored for safe high-temperature lithium batteries. In the present work we have prepared and studied materials based on alternating mesogen-like naphthalene sulfonate units interconnected by flexible poly(ethylene oxide) (PEO) segments in order to induce microphase separation and physical crosslinking. These segmented polymers were readily prepared in polycondensations of a naphthalene diol sulfonate and chain-end chlorinated PEO. The ionic content of the final materials was conveniently controlled by using PEOs of different molecular weights. Analysis by X-ray scattering showed a morphology with nanoscopic domains of naphthalene sulfonate units dispersed in a matrix of amorphous PEO segments. The aggregation of the naphthalene sulfonate units increased with temperature up to at least 100 °C, while the crystallization of the PEO segments in some materials reversibly dissolved the naphthalene sulfonate domains upon cooling. The crystallinity decreased and the glass transition temperature increased with decreasing PEO segment length, i.e., increasing in ionic content, because of increasing ionic coordination and a decreasing PEO segment length in-between the naphthalene sulfonate domains. At 80 and 120 °C, the present single-Li+-ion conductors reached conductivities up to 1.4·10−6 and 5.5·10−6  S cm−1, respectively, which after addition of 29 wt % triglyme increased to 2.9·10−6 and 8.2·10−6  S cm−1, respectively. The combined results showed that the macromolecular design with ionic mesogen-like units that form stable physically cross-linked morphologies by interconnecting flexible polyether segments is advantageous for polymer electrolytes for safe high-temperature operation. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Polymer
volume
177
pages
231 - 240
publisher
Elsevier
external identifiers
  • scopus:85067245386
ISSN
0032-3861
DOI
10.1016/j.polymer.2019.06.010
language
English
LU publication?
yes
id
e9b28bdd-84d1-414f-b430-5862a8b15a14
date added to LUP
2019-06-05 16:22:18
date last changed
2019-07-16 04:11:00
@article{e9b28bdd-84d1-414f-b430-5862a8b15a14,
  abstract     = {Solid single-Li<sup>+</sup>-ion conducting polymer electrolytes are currently explored for safe high-temperature lithium batteries. In the present work we have prepared and studied materials based on alternating mesogen-like naphthalene sulfonate units interconnected by flexible poly(ethylene oxide) (PEO) segments in order to induce microphase separation and physical crosslinking. These segmented polymers were readily prepared in polycondensations of a naphthalene diol sulfonate and chain-end chlorinated PEO. The ionic content of the final materials was conveniently controlled by using PEOs of different molecular weights. Analysis by X-ray scattering showed a morphology with nanoscopic domains of naphthalene sulfonate units dispersed in a matrix of amorphous PEO segments. The aggregation of the naphthalene sulfonate units increased with temperature up to at least 100 °C, while the crystallization of the PEO segments in some materials reversibly dissolved the naphthalene sulfonate domains upon cooling. The crystallinity decreased and the glass transition temperature increased with decreasing PEO segment length, <i>i.e</i>., increasing in ionic content, because of increasing ionic coordination and a decreasing PEO segment length in-between the naphthalene sulfonate domains. At 80 and 120 °C, the present single-Li+-ion conductors reached conductivities up to 1.4·10<sup>−6</sup> and 5.5·10<sup>−6 </sup> S cm<sup>−1</sup>, respectively, which after addition of 29 wt % triglyme increased to 2.9·10<sup>−6</sup> and 8.2·10<sup>−6</sup>  S cm<sup>−1</sup>, respectively. The combined results showed that the macromolecular design with ionic mesogen-like units that form stable physically cross-linked morphologies by interconnecting flexible polyether segments is advantageous for polymer electrolytes for safe high-temperature operation.},
  author       = {Nederstedt, Hannes and Jannasch, Patric},
  issn         = {0032-3861},
  language     = {eng},
  pages        = {231--240},
  publisher    = {Elsevier},
  series       = {Polymer},
  title        = {Single-ion conducting polymer electrolytes with alternating ionic mesogen-like moieties interconnected by poly(ethylene oxide) segments},
  url          = {http://dx.doi.org/10.1016/j.polymer.2019.06.010},
  volume       = {177},
  year         = {2019},
}