Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

A Monte Carlo analysis of the effect of heat release rate uncertainty on available safe egress time

Kong, Depeng LU ; Johansson, Nils LU orcid ; Van Hees, Patrick LU ; Lu, Shouxiang and Lo, Siuming (2013) In Journal of Fire Protection Engineering 23(1).
Abstract
Available safe egress time is an important criterion to determine occupant safety in performance-based fire protection design of buildings. There are many factors affecting the calculation of available safe egress time, such as heat release rate, smoke toxicity and the geometry of the building. Heat release rate is the most critical factor. Due to the variation of fuel layout, initial ignition location and many other factors, significant uncertainties are associated with heat release rate. Traditionally, fire safety engineers prefer to ignore these uncertainties, and a fixed value of heat release rate is assigned based on experience. This makes the available safe egress time results subjective. To quantify the effect of uncertainties in... (More)
Available safe egress time is an important criterion to determine occupant safety in performance-based fire protection design of buildings. There are many factors affecting the calculation of available safe egress time, such as heat release rate, smoke toxicity and the geometry of the building. Heat release rate is the most critical factor. Due to the variation of fuel layout, initial ignition location and many other factors, significant uncertainties are associated with heat release rate. Traditionally, fire safety engineers prefer to ignore these uncertainties, and a fixed value of heat release rate is assigned based on experience. This makes the available safe egress time results subjective. To quantify the effect of uncertainties in heat release rate on available safe egress time, a Monte Carlo simulation approach is implemented for a case study of a single hypothetical fire compartment in a commercial building. First, the effect of deterministic peak heat release rate and fire growth rate on the predicted available safe egress time is studied. Then, the effect of uncertainties in peak heat release rate and fire growth rate are analyzed separately. Normal and log-normal distributions are employed to characterize peak heat release rate and fire growth rate, respectively. Finally, the effect of uncertainties in both peak heat release rate and fire growth rate on available safe egress time are analyzed. Illustrations are also provided on how to utilize probabilistic functions, such as the cumulative density function and complementary cumulative distribution function, to help fire safety engineers develop proper design fires. (Less)
Please use this url to cite or link to this publication:
author
; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Journal of Fire Protection Engineering
volume
23
issue
1
publisher
SAGE Publications
external identifiers
  • wos:000314478700001
  • scopus:84873593354
ISSN
1042-3915
DOI
10.1177/1042391512452676
language
English
LU publication?
yes
additional info
På "OnlineFirst" SAGE, 2012
id
eb2452f3-4855-4970-a06a-1445cc5d0e5f (old id 2855850)
date added to LUP
2016-04-01 10:06:56
date last changed
2022-04-27 18:47:37
@article{eb2452f3-4855-4970-a06a-1445cc5d0e5f,
  abstract     = {{Available safe egress time is an important criterion to determine occupant safety in performance-based fire protection design of buildings. There are many factors affecting the calculation of available safe egress time, such as heat release rate, smoke toxicity and the geometry of the building. Heat release rate is the most critical factor. Due to the variation of fuel layout, initial ignition location and many other factors, significant uncertainties are associated with heat release rate. Traditionally, fire safety engineers prefer to ignore these uncertainties, and a fixed value of heat release rate is assigned based on experience. This makes the available safe egress time results subjective. To quantify the effect of uncertainties in heat release rate on available safe egress time, a Monte Carlo simulation approach is implemented for a case study of a single hypothetical fire compartment in a commercial building. First, the effect of deterministic peak heat release rate and fire growth rate on the predicted available safe egress time is studied. Then, the effect of uncertainties in peak heat release rate and fire growth rate are analyzed separately. Normal and log-normal distributions are employed to characterize peak heat release rate and fire growth rate, respectively. Finally, the effect of uncertainties in both peak heat release rate and fire growth rate on available safe egress time are analyzed. Illustrations are also provided on how to utilize probabilistic functions, such as the cumulative density function and complementary cumulative distribution function, to help fire safety engineers develop proper design fires.}},
  author       = {{Kong, Depeng and Johansson, Nils and Van Hees, Patrick and Lu, Shouxiang and Lo, Siuming}},
  issn         = {{1042-3915}},
  language     = {{eng}},
  number       = {{1}},
  publisher    = {{SAGE Publications}},
  series       = {{Journal of Fire Protection Engineering}},
  title        = {{A Monte Carlo analysis of the effect of heat release rate uncertainty on available safe egress time}},
  url          = {{http://dx.doi.org/10.1177/1042391512452676}},
  doi          = {{10.1177/1042391512452676}},
  volume       = {{23}},
  year         = {{2013}},
}