Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Predicting vibroacoustic performance of thin-walled lightweight structures during conceptual design

Persson, Peter LU ; Flodén, Ola LU and Pedersen, Björn (2020) In Finite Elements in Analysis and Design 169.
Abstract

To predict the vibroacoustic performance of complex thin-walled structures, an analysis using a finite element model considering structure–acoustic interaction is often required. The acoustic response of such models can be time-consuming to compute and sensitive to minor design changes. These models can be too computationally intense since fast design optimizations must be performed. Moreover, knowledge of the final design is limited in the conceptual design phase, which implies that detailed modeling and analysis is of less value. It is therefore of interest for engineers to evaluate an efficient conceptual model using a prediction metric that has an acceptable correlation to the acoustic response of the structure. In this paper, we... (More)

To predict the vibroacoustic performance of complex thin-walled structures, an analysis using a finite element model considering structure–acoustic interaction is often required. The acoustic response of such models can be time-consuming to compute and sensitive to minor design changes. These models can be too computationally intense since fast design optimizations must be performed. Moreover, knowledge of the final design is limited in the conceptual design phase, which implies that detailed modeling and analysis is of less value. It is therefore of interest for engineers to evaluate an efficient conceptual model using a prediction metric that has an acceptable correlation to the acoustic response of the structure. In this paper, we investigate different vibroacoustic prediction metrics for their adequacy to be used in the conceptual design of a thin-walled lightweight structure. As a reference model, we use a finite element model considering structure–acoustic interaction to compute the vibroacoustic performance of an automotive vehicle. We evaluate the adequacy of different prediction metrics for a conceptual model in terms of their correlation to the acoustic response inside the vehicle computed using the detailed reference model. Two measures were determined to have poor performance as prediction metrics: frequencies of the fundamental modes and global stiffness, respectively. However, a significant correlation was demonstrated for a prediction metric based on transfer mobilities.

(Less)
Please use this url to cite or link to this publication:
author
; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Automotive body structure, Conceptual design, Finite element method, Lightweight structure, Structure-borne sound, Structure–acoustic analysis
in
Finite Elements in Analysis and Design
volume
169
article number
103342
publisher
Elsevier
external identifiers
  • scopus:85074302295
ISSN
0168-874X
DOI
10.1016/j.finel.2019.103342
language
English
LU publication?
yes
id
efbf524d-cac3-4854-bca0-de8c2fbee1a7
date added to LUP
2019-11-13 09:49:39
date last changed
2023-08-30 12:11:29
@article{efbf524d-cac3-4854-bca0-de8c2fbee1a7,
  abstract     = {{<p>To predict the vibroacoustic performance of complex thin-walled structures, an analysis using a finite element model considering structure–acoustic interaction is often required. The acoustic response of such models can be time-consuming to compute and sensitive to minor design changes. These models can be too computationally intense since fast design optimizations must be performed. Moreover, knowledge of the final design is limited in the conceptual design phase, which implies that detailed modeling and analysis is of less value. It is therefore of interest for engineers to evaluate an efficient conceptual model using a prediction metric that has an acceptable correlation to the acoustic response of the structure. In this paper, we investigate different vibroacoustic prediction metrics for their adequacy to be used in the conceptual design of a thin-walled lightweight structure. As a reference model, we use a finite element model considering structure–acoustic interaction to compute the vibroacoustic performance of an automotive vehicle. We evaluate the adequacy of different prediction metrics for a conceptual model in terms of their correlation to the acoustic response inside the vehicle computed using the detailed reference model. Two measures were determined to have poor performance as prediction metrics: frequencies of the fundamental modes and global stiffness, respectively. However, a significant correlation was demonstrated for a prediction metric based on transfer mobilities.</p>}},
  author       = {{Persson, Peter and Flodén, Ola and Pedersen, Björn}},
  issn         = {{0168-874X}},
  keywords     = {{Automotive body structure; Conceptual design; Finite element method; Lightweight structure; Structure-borne sound; Structure–acoustic analysis}},
  language     = {{eng}},
  publisher    = {{Elsevier}},
  series       = {{Finite Elements in Analysis and Design}},
  title        = {{Predicting vibroacoustic performance of thin-walled lightweight structures during conceptual design}},
  url          = {{http://dx.doi.org/10.1016/j.finel.2019.103342}},
  doi          = {{10.1016/j.finel.2019.103342}},
  volume       = {{169}},
  year         = {{2020}},
}