Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

MXCuBE2: the dawn of MXCuBE Collaboration

Oscarsson, Markus ; Müller, Uwe LU ; Nan, Jie LU ; Eguiraun, Mikel LU ; Bolmsten, Fredrik LU ; Nardella, Alberto LU orcid ; Milan Otero, Antonio LU ; Thunnissen, Marjolein LU orcid and de Sanctis, Daniele (2019) In Journal of Synchrotron Radiation
Abstract
MXCuBE2 is the second-generation evolution of the MXCuBE beamline control software, initially developed and used at ESRF – the European Synchrotron. MXCuBE2 extends, in an intuitive graphical user interface (GUI), the functionalities and data collection methods available to users while keeping all previously available features and allowing for the straightforward incorporation of ongoing and future developments. MXCuBE2 introduces an extended abstraction layer that allows easy interfacing of any kind of macromolecular crystallography (MX) hardware component, whether this is a diffractometer, sample changer, detector or optical element. MXCuBE2 also works in strong synergy with the ISPyB Laboratory Information Management System, accessing... (More)
MXCuBE2 is the second-generation evolution of the MXCuBE beamline control software, initially developed and used at ESRF – the European Synchrotron. MXCuBE2 extends, in an intuitive graphical user interface (GUI), the functionalities and data collection methods available to users while keeping all previously available features and allowing for the straightforward incorporation of ongoing and future developments. MXCuBE2 introduces an extended abstraction layer that allows easy interfacing of any kind of macromolecular crystallography (MX) hardware component, whether this is a diffractometer, sample changer, detector or optical element. MXCuBE2 also works in strong synergy with the ISPyB Laboratory Information Management System, accessing the list of samples available for a particular experimental session and associating, either from instructions contained in ISPyB or from user input via the MXCuBE2 GUI, different data collection types to them. The development of MXCuBE2 forms the core of a fruitful collaboration which brings together several European synchrotrons and a software development factory and, as such, defines a new paradigm for the development of beamline control platforms for the European MX user community. © Marcus Oscarsson et al. 2019 (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; and
author collaboration
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
graphical user interface, macromolecular crystallography, MXCuBE, software collaboration, synchrotron beamline control software, Abstracting, Crystallography, Data acquisition, Graphical user interfaces, Information management, Macromolecules, Software design, Control software, Data collection method, Graphical user interfaces (GUI), Hardware components, Laboratory information management system, Macromolecular crystallography, Second generation, Copper compounds
in
Journal of Synchrotron Radiation
publisher
International Union of Crystallography
external identifiers
  • scopus:85061972704
  • pmid:30855248
ISSN
1600-5775
DOI
10.1107/S1600577519001267
language
English
LU publication?
yes
additional info
Export Date: 7 March 2019
id
f16ea17c-4d2c-41ee-bb61-ebc7704a5db3
date added to LUP
2019-03-07 14:55:21
date last changed
2024-11-15 02:49:11
@article{f16ea17c-4d2c-41ee-bb61-ebc7704a5db3,
  abstract     = {{MXCuBE2 is the second-generation evolution of the MXCuBE beamline control software, initially developed and used at ESRF – the European Synchrotron. MXCuBE2 extends, in an intuitive graphical user interface (GUI), the functionalities and data collection methods available to users while keeping all previously available features and allowing for the straightforward incorporation of ongoing and future developments. MXCuBE2 introduces an extended abstraction layer that allows easy interfacing of any kind of macromolecular crystallography (MX) hardware component, whether this is a diffractometer, sample changer, detector or optical element. MXCuBE2 also works in strong synergy with the ISPyB Laboratory Information Management System, accessing the list of samples available for a particular experimental session and associating, either from instructions contained in ISPyB or from user input via the MXCuBE2 GUI, different data collection types to them. The development of MXCuBE2 forms the core of a fruitful collaboration which brings together several European synchrotrons and a software development factory and, as such, defines a new paradigm for the development of beamline control platforms for the European MX user community. © Marcus Oscarsson et al. 2019}},
  author       = {{Oscarsson, Markus and Müller, Uwe and Nan, Jie and Eguiraun, Mikel and Bolmsten, Fredrik and Nardella, Alberto and Milan Otero, Antonio and Thunnissen, Marjolein and de Sanctis, Daniele}},
  issn         = {{1600-5775}},
  keywords     = {{graphical user interface; macromolecular crystallography; MXCuBE; software collaboration; synchrotron beamline control software; Abstracting; Crystallography; Data acquisition; Graphical user interfaces; Information management; Macromolecules; Software design; Control software; Data collection method; Graphical user interfaces (GUI); Hardware components; Laboratory information management system; Macromolecular crystallography; Second generation; Copper compounds}},
  language     = {{eng}},
  publisher    = {{International Union of Crystallography}},
  series       = {{Journal of Synchrotron Radiation}},
  title        = {{MXCuBE2: the dawn of MXCuBE Collaboration}},
  url          = {{http://dx.doi.org/10.1107/S1600577519001267}},
  doi          = {{10.1107/S1600577519001267}},
  year         = {{2019}},
}