Endpoint compactness of singular integrals and perturbations of the Cauchy integral
(2017) In Kyoto Journal of Mathematics 57(2). p.365-393- Abstract
We prove sufficient and necessary conditions for the compactness of Calderón-Zygmund operators on the endpoint from L∞ (R) into CMO(R). We use this result to prove the compactness on Lp (R) with 1 < p < ∞ of a certain perturbation of the Cauchy integral on curves with normal derivatives satisfying a CMO-condition.
Please use this url to cite or link to this publication:
https://lup.lub.lu.se/record/f4f39d77-9594-4572-9b0e-9b552c15f3c1
- author
- Perfekt, Karl Mikael LU ; Pott, Sandra LU and Villarroya, Paco
- organization
- publishing date
- 2017-06-01
- type
- Contribution to journal
- publication status
- published
- subject
- in
- Kyoto Journal of Mathematics
- volume
- 57
- issue
- 2
- pages
- 29 pages
- publisher
- Kyoto University
- external identifiers
-
- scopus:85019766221
- wos:000400882600004
- ISSN
- 2156-2261
- DOI
- 10.1215/21562261-3821837
- language
- English
- LU publication?
- yes
- id
- f4f39d77-9594-4572-9b0e-9b552c15f3c1
- date added to LUP
- 2017-06-08 13:05:18
- date last changed
- 2024-10-14 07:27:54
@article{f4f39d77-9594-4572-9b0e-9b552c15f3c1, abstract = {{<p>We prove sufficient and necessary conditions for the compactness of Calderón-Zygmund operators on the endpoint from L<sup>∞</sup> (R) into CMO(R). We use this result to prove the compactness on L<sup>p</sup> (R) with 1 < p < <sup>∞</sup> of a certain perturbation of the Cauchy integral on curves with normal derivatives satisfying a CMO-condition.</p>}}, author = {{Perfekt, Karl Mikael and Pott, Sandra and Villarroya, Paco}}, issn = {{2156-2261}}, language = {{eng}}, month = {{06}}, number = {{2}}, pages = {{365--393}}, publisher = {{Kyoto University}}, series = {{Kyoto Journal of Mathematics}}, title = {{Endpoint compactness of singular integrals and perturbations of the Cauchy integral}}, url = {{http://dx.doi.org/10.1215/21562261-3821837}}, doi = {{10.1215/21562261-3821837}}, volume = {{57}}, year = {{2017}}, }