Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Molecular phylogeny of Sterrhinae moths (Lepidoptera: : Geometridae): towards a global classification

Sihvonen, Pasi ; Murillo-Ramos, Leidys LU orcid ; Brehm, Gunnar ; Staude, Hermann and Wahlberg, Niklas LU (2020) In Systematic Entomology 45(3). p.606-634
Abstract

A multigene phylogenetic study was carried out to test current, mostly morphology-based hypotheses on Sterrhinae phylogeny with additional material included from further geographical areas and morphologically different lineages. A maximum likelihood analysis (11 molecular markers and 7665 bp) was conducted on 76 species and 41 genera using iq-tree software. The resulting phylogenetic hypothesis is well resolved and branches have high support values. Results generally agree with earlier hypotheses at tribal levels and support the hypothesis that Sterrhinae comprises two major lineages. Based on the molecular phylogeny and extensive morphological examination, nine tribes are considered valid and the following taxonomic changes are... (More)

A multigene phylogenetic study was carried out to test current, mostly morphology-based hypotheses on Sterrhinae phylogeny with additional material included from further geographical areas and morphologically different lineages. A maximum likelihood analysis (11 molecular markers and 7665 bp) was conducted on 76 species and 41 genera using iq-tree software. The resulting phylogenetic hypothesis is well resolved and branches have high support values. Results generally agree with earlier hypotheses at tribal levels and support the hypothesis that Sterrhinae comprises two major lineages. Based on the molecular phylogeny and extensive morphological examination, nine tribes are considered valid and the following taxonomic changes are introduced to recognize monophyletic groups: Mecoceratini Guenée, 1858 (= Ametridini Prout, 1910) is transferred from Desmobathrinae to Sterrhinae, and it is considered valid at tribal level new classification; Haemaleini Sihvonen & Brehm is described as a new tribe and deemed sister to Scopulini + Lissoblemmini; Lissoblemmini Sihvonen & Staude is described as a new tribe and sister to Scopulini; Lythriini Herbulot, 1962 is now a junior synonym of Rhodometrini Agenjo, 1952 syn.n.; and Rhodostrophiini Prout, 1935 is now a junior synonym of Cyllopodini Kirby, 1892 syn.n. In addition, 48 taxa are transferred from other geometrid subfamilies to Sterrhinae, or within Sterrhinae from one tribe to another, or they are classified into a tribe for the first time, or a new genus classification is proposed. The results demonstrate the limited explanatory power of earlier classifications, particularly at the tribal level. This is probably a result of earlier classifications being based on superficial characters and biased towards the European and North American fauna. The species richness and distribution of Sterrhinae and its constituent tribes are reviewed, showing that the globally distributed Sterrhinae are most diverse in the Neotropics (31% of global fauna). They are species-rich in the Palaearctic (22%), Afrotropics (19%) and Indo-Malay (16%) regions, whereas they are almost absent in Oceania (1%). In terms of the described fauna, the most species-rich tribes are Scopulini (928 species), Sterrhini (876 species) and Cosymbiini (553 species), all of which have a cosmopolitan distribution. Mecoceratiini and Haemaleini are almost entirely Neotropical. Timandrini and Lissoblemmini, by contrast, are absent in the Neotropics. We present a revised classification of the global Sterrhinae fauna, which includes about 3000 putatively valid species, classified into nine tribes and 97 genera. Four genera are of uncertain position within Sterrhinae. Our results highlight the compelling need to include more genera from a global perspective in molecular phylogenetic studies, in order to create a stable global classification for this subfamily. This published work has been registered on ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:A66F5DDD-06D6-4908-893E-E8B124BB99B1.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Systematic Entomology
volume
45
issue
3
pages
606 - 634
publisher
Wiley-Blackwell
external identifiers
  • scopus:85085751330
ISSN
0307-6970
DOI
10.1111/syen.12418
language
English
LU publication?
yes
id
f557b378-98d6-4251-a181-612d8b43f6ef
date added to LUP
2020-12-09 10:31:48
date last changed
2022-04-26 22:26:17
@article{f557b378-98d6-4251-a181-612d8b43f6ef,
  abstract     = {{<p>A multigene phylogenetic study was carried out to test current, mostly morphology-based hypotheses on Sterrhinae phylogeny with additional material included from further geographical areas and morphologically different lineages. A maximum likelihood analysis (11 molecular markers and 7665 bp) was conducted on 76 species and 41 genera using iq-tree software. The resulting phylogenetic hypothesis is well resolved and branches have high support values. Results generally agree with earlier hypotheses at tribal levels and support the hypothesis that Sterrhinae comprises two major lineages. Based on the molecular phylogeny and extensive morphological examination, nine tribes are considered valid and the following taxonomic changes are introduced to recognize monophyletic groups: Mecoceratini Guenée, 1858 (= Ametridini Prout, 1910) is transferred from Desmobathrinae to Sterrhinae, and it is considered valid at tribal level new classification; Haemaleini Sihvonen &amp; Brehm is described as a new tribe and deemed sister to Scopulini + Lissoblemmini; Lissoblemmini Sihvonen &amp; Staude is described as a new tribe and sister to Scopulini; Lythriini Herbulot, 1962 is now a junior synonym of Rhodometrini Agenjo, 1952 syn.n.; and Rhodostrophiini Prout, 1935 is now a junior synonym of Cyllopodini Kirby, 1892 syn.n. In addition, 48 taxa are transferred from other geometrid subfamilies to Sterrhinae, or within Sterrhinae from one tribe to another, or they are classified into a tribe for the first time, or a new genus classification is proposed. The results demonstrate the limited explanatory power of earlier classifications, particularly at the tribal level. This is probably a result of earlier classifications being based on superficial characters and biased towards the European and North American fauna. The species richness and distribution of Sterrhinae and its constituent tribes are reviewed, showing that the globally distributed Sterrhinae are most diverse in the Neotropics (31% of global fauna). They are species-rich in the Palaearctic (22%), Afrotropics (19%) and Indo-Malay (16%) regions, whereas they are almost absent in Oceania (1%). In terms of the described fauna, the most species-rich tribes are Scopulini (928 species), Sterrhini (876 species) and Cosymbiini (553 species), all of which have a cosmopolitan distribution. Mecoceratiini and Haemaleini are almost entirely Neotropical. Timandrini and Lissoblemmini, by contrast, are absent in the Neotropics. We present a revised classification of the global Sterrhinae fauna, which includes about 3000 putatively valid species, classified into nine tribes and 97 genera. Four genera are of uncertain position within Sterrhinae. Our results highlight the compelling need to include more genera from a global perspective in molecular phylogenetic studies, in order to create a stable global classification for this subfamily. This published work has been registered on ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:A66F5DDD-06D6-4908-893E-E8B124BB99B1.</p>}},
  author       = {{Sihvonen, Pasi and Murillo-Ramos, Leidys and Brehm, Gunnar and Staude, Hermann and Wahlberg, Niklas}},
  issn         = {{0307-6970}},
  language     = {{eng}},
  month        = {{07}},
  number       = {{3}},
  pages        = {{606--634}},
  publisher    = {{Wiley-Blackwell}},
  series       = {{Systematic Entomology}},
  title        = {{Molecular phylogeny of Sterrhinae moths (Lepidoptera: : Geometridae): towards a global classification}},
  url          = {{http://dx.doi.org/10.1111/syen.12418}},
  doi          = {{10.1111/syen.12418}},
  volume       = {{45}},
  year         = {{2020}},
}