Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Proteins of novel lactic acid bacteria from Apis mellifera mellifera: an insight into the production of known extra-cellular proteins during microbial stress

Butler, Éile LU ; Alsterfjord, Magnus LU ; Olofsson, Tobias LU ; Karlsson, Christofer LU ; Malmström, Johan LU orcid and Vasquez, Alejandra LU (2013) In BMC Microbiology 13.
Abstract
Background: Lactic acid bacteria (LAB) has been considered a beneficial bacterial group, found as part of the microbiota of diverse hosts, including humans and various animals. However, the mechanisms of how hosts and LAB interact are still poorly understood. Previous work demonstrates that 13 species of Lactobacillus and Bifidobacterium from the honey crop in bees function symbiotically with the honeybee. They protect each other, their hosts, and the surrounding environment against severe bee pathogens, bacteria, and yeasts. Therefore, we hypothesized that these LAB under stress, i.e. in their natural niche in the honey crop, are likely to produce bioactive substances with antimicrobial activity. Results: The genomic analysis of the LAB... (More)
Background: Lactic acid bacteria (LAB) has been considered a beneficial bacterial group, found as part of the microbiota of diverse hosts, including humans and various animals. However, the mechanisms of how hosts and LAB interact are still poorly understood. Previous work demonstrates that 13 species of Lactobacillus and Bifidobacterium from the honey crop in bees function symbiotically with the honeybee. They protect each other, their hosts, and the surrounding environment against severe bee pathogens, bacteria, and yeasts. Therefore, we hypothesized that these LAB under stress, i.e. in their natural niche in the honey crop, are likely to produce bioactive substances with antimicrobial activity. Results: The genomic analysis of the LAB demonstrated varying genome sizes ranging from 1.5 to 2.2 mega-base pairs (Mbps) which points out a clear difference within the protein gene content, as well as specialized functions in the honeybee microbiota and their adaptation to their host. We demonstrate a clear variation between the secreted proteins of the symbiotic LAB when subjected to microbial stressors. We have identified that 10 of the 13 LAB produced extra-cellular proteins of known or unknown function in which some are arranged in interesting putative operons that may be involved in antimicrobial action, host interaction, or biofilm formation. The most common known extra-cellular proteins secreted were enzymes, DNA chaperones, S-layer proteins, bacteriocins, and lysozymes. A new bacteriocin may have been identified in one of the LAB symbionts while many proteins with unknown functions were produced which must be investigated further. Conclusions: The 13 LAB symbionts likely play different roles in their natural environment defending their niche and their host and participating in the honeybee's food production. These roles are partly played through producing extracellular proteins on exposure to microbial stressors widely found in natural occurring flowers. Many of these secreted proteins may have a putative antimicrobial function. In the future, understanding these processes in this complicated environment may lead to novel applications of honey crop LAB proteins. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Lactic acid bacteria, Symbionts, Microbial stress, Proteomics, Honeybee
in
BMC Microbiology
volume
13
article number
235
publisher
BioMed Central (BMC)
external identifiers
  • wos:000328852700002
  • scopus:84886875528
  • pmid:24148670
ISSN
1471-2180
DOI
10.1186/1471-2180-13-235
language
English
LU publication?
yes
id
f5d5faee-d2bb-4896-8711-eecf648d043d (old id 4272112)
date added to LUP
2016-04-01 14:31:34
date last changed
2022-02-19 19:24:14
@article{f5d5faee-d2bb-4896-8711-eecf648d043d,
  abstract     = {{Background: Lactic acid bacteria (LAB) has been considered a beneficial bacterial group, found as part of the microbiota of diverse hosts, including humans and various animals. However, the mechanisms of how hosts and LAB interact are still poorly understood. Previous work demonstrates that 13 species of Lactobacillus and Bifidobacterium from the honey crop in bees function symbiotically with the honeybee. They protect each other, their hosts, and the surrounding environment against severe bee pathogens, bacteria, and yeasts. Therefore, we hypothesized that these LAB under stress, i.e. in their natural niche in the honey crop, are likely to produce bioactive substances with antimicrobial activity. Results: The genomic analysis of the LAB demonstrated varying genome sizes ranging from 1.5 to 2.2 mega-base pairs (Mbps) which points out a clear difference within the protein gene content, as well as specialized functions in the honeybee microbiota and their adaptation to their host. We demonstrate a clear variation between the secreted proteins of the symbiotic LAB when subjected to microbial stressors. We have identified that 10 of the 13 LAB produced extra-cellular proteins of known or unknown function in which some are arranged in interesting putative operons that may be involved in antimicrobial action, host interaction, or biofilm formation. The most common known extra-cellular proteins secreted were enzymes, DNA chaperones, S-layer proteins, bacteriocins, and lysozymes. A new bacteriocin may have been identified in one of the LAB symbionts while many proteins with unknown functions were produced which must be investigated further. Conclusions: The 13 LAB symbionts likely play different roles in their natural environment defending their niche and their host and participating in the honeybee's food production. These roles are partly played through producing extracellular proteins on exposure to microbial stressors widely found in natural occurring flowers. Many of these secreted proteins may have a putative antimicrobial function. In the future, understanding these processes in this complicated environment may lead to novel applications of honey crop LAB proteins.}},
  author       = {{Butler, Éile and Alsterfjord, Magnus and Olofsson, Tobias and Karlsson, Christofer and Malmström, Johan and Vasquez, Alejandra}},
  issn         = {{1471-2180}},
  keywords     = {{Lactic acid bacteria; Symbionts; Microbial stress; Proteomics; Honeybee}},
  language     = {{eng}},
  publisher    = {{BioMed Central (BMC)}},
  series       = {{BMC Microbiology}},
  title        = {{Proteins of novel lactic acid bacteria from Apis mellifera mellifera: an insight into the production of known extra-cellular proteins during microbial stress}},
  url          = {{https://lup.lub.lu.se/search/files/4022513/4588302}},
  doi          = {{10.1186/1471-2180-13-235}},
  volume       = {{13}},
  year         = {{2013}},
}