Advanced

Validating the existence of the supercraton Vaalbara in the Mesoarchaean to Palaeoproterozoic

Gumsley, Ashley LU (2017)
Abstract (Swedish)
Det är allmänt känt att kontinenter under Jordens historia har separerat och kolliderat i ett cykliskt förlopp vilket har lett till existensen av större landmassor, superkontinenter eller superkratoner under vissa tidsperioder. En av de tidigaste föreslagna superkratonerna är Vaalbara, som sedan 1960-talet har ansetts bestå av Kaapvaalkratonen i södra Afrika och Pilbarakratonen i västra Australien. I denna avhandling har jag testat validiteten av Vaalbara med radiometriska och paleomagnetiska studier av magmatiska, mantelderiverade bergarter. Många tidigare studier har visat på geologiska likheter i arkeisk till proterozoisk berggrund, som Kaapvaal och Pilbara domineras av. Dessa inkluderar både vulkaniska och sedimentära bergarter, såsom... (More)
Det är allmänt känt att kontinenter under Jordens historia har separerat och kolliderat i ett cykliskt förlopp vilket har lett till existensen av större landmassor, superkontinenter eller superkratoner under vissa tidsperioder. En av de tidigaste föreslagna superkratonerna är Vaalbara, som sedan 1960-talet har ansetts bestå av Kaapvaalkratonen i södra Afrika och Pilbarakratonen i västra Australien. I denna avhandling har jag testat validiteten av Vaalbara med radiometriska och paleomagnetiska studier av magmatiska, mantelderiverade bergarter. Många tidigare studier har visat på geologiska likheter i arkeisk till proterozoisk berggrund, som Kaapvaal och Pilbara domineras av. Dessa inkluderar både vulkaniska och sedimentära bergarter, såsom återfinns i Fortescue- and Hammersleybassängerna i Pilbara och motsvarande bergarter Ventersdorp- och Transvaalbassängerna i Kaapvaal. Några exakta överenstämmelser av åldrar för basiska bergarter har hittills inte kunnat påvisas. I detta doktorandprojekt har jag med nya åldersbestämningar försökt identifiera möjliga matchningar genom undersökningar av regionala diabasgångsvärmar, och även utfört paleomagnetiska studier på vissa av de bergarter som åldersbestämts. Den generella slutsatsen är att de nya resultaten utgör ringa stöd för att Kaapvaal- och Pilbarakratonerna var i direkt kontakt med varandra under tidsperioden från 2,99 till 1,92 miljarder år sedan. I stället föreslår jag att dessa kratoner under denna tidsperiod ingick en betydligt större kontinent, vilken dessutom inkluderade block från dagens Nordamerika (USA och Kanada), Finland, Ryssland, Ukraina och Indien. Denna slutssats styrks av att samtliga dessa krustala block delar många geologiska, geokronologiska och paleomagnetiska likheter under denna tidsperiod. Detta stödjer hypotesen om att två landmassor existerade från arkeikum till första delen av paleoproterozoikum, där Kaapvaal och Pilbara utgjorde delar av en av dessa, vilken jag valt att kalla “Supervaalbara”. (Less)
Abstract
In this thesis, the longevity and continuity of the Vaalbara supercraton is addressed in six papers aimed at placing new temporal and spatial constraints on
the supercraton in the Mesoarchean to Paleoproterozoic. It has been speculated since the 1960’s that the Kaapvaal Craton in southern Africa, together with
the Pilbara Craton in Western Australia existed as a single landmass during the Precambrian – the Vaalbara supercraton. Many studies have demonstrated the
geological similarities between the cratons, particularly in terms of their Mesoarchean to Paleoproterozoic unconformity-bounded sequences. These unconformity-bounded sequences have continuously been refined and developed, especially since the 1990’s. The first main... (More)
In this thesis, the longevity and continuity of the Vaalbara supercraton is addressed in six papers aimed at placing new temporal and spatial constraints on
the supercraton in the Mesoarchean to Paleoproterozoic. It has been speculated since the 1960’s that the Kaapvaal Craton in southern Africa, together with
the Pilbara Craton in Western Australia existed as a single landmass during the Precambrian – the Vaalbara supercraton. Many studies have demonstrated the
geological similarities between the cratons, particularly in terms of their Mesoarchean to Paleoproterozoic unconformity-bounded sequences. These unconformity-bounded sequences have continuously been refined and developed, especially since the 1990’s. The first main stratigraphic similarities lie in the volcanic and sedimentary successions found in the Neoarchean Fortescue Group and Ventersdorp Supergroup basins on the Pilbara and Kaapvaal cratons, respectively, along with other associated basins. The unconformably overlying Hammersley (and Turee Creek) Group and Transvaal Supergroup on the Pilbara and Kaapvaal cratons, respectively, also show many stratigraphic similarities, and both host world-class deposits of hydrothermally-upgraded iron formations. However, no marker beds or precise age matches have yet been made, especially in the extensive Mesoarchean to Paleoproterozoic mafic dyke swarms and sill provinces present in each craton from the time interval discussed in this thesis. Regardless, the geological discussions has been aided by geochronological and paleomagnetic studies, which have both credited and discredited the existence of the Pilbara and Kaapvaal cratons as nearest neighbours for the time interval between ca. 2.87 Ga and ca. 2.65 Ga.

In this thesis, the so-called magmatic barcode record of large igneous provinces (LIPs), which are extensive and short-lived volcanic events, of the Kaapvaal
Craton is presented together with that of the Pilbara Craton in conjunction with previous geochronological and paleomagnetic studies. This magmatic barcode
record refines temporal, and through paleomagnetism, spatial constraints, and invalidates the existence of Vaalbara as a distinct continuous supercraton. Magmatic and paleomagnetic linkages between the 2.99-2.98 Ga Usushwana Complex on the Kaapvaal Craton and the ca. 2.87 Ga Millindinna Complex on the
Pilbara Craton are shown to be incorrect with new ages for the Usushwana Complex and Badplaas dyke swarm presented in Gumsley et al. (2015). Extensive
mafic dyke swarms associated with Neoarchean Fortescue volcanism on the Pilbara Craton and Ventersdorp volcanism on the Kaapvaal Craton also show less
similarities from new paleomagnetic and geochronological constraints. These constraints are presented in Gumsley et al. (2016) and Evans et al. (2017) for the
newly identified White Mfolozi and Black Range mafic dyke swarms, respectively, on the Kaapvaal and Pilbara cratons. Gumsley et al. (2017) and Kampmann
et al. (2015) also present a new LIP, the Ongeluk, on the Kaapvaal Craton which has not been identified on the Pilbara Craton. This new LIP is composed of
the Ongeluk Formation in the Transvaal Supergroup on the western margin of the Kaapvaal Craton, as well as the Westerberg Sill Province and a north-trending
mafic dyke swarm. The Ongeluk LIP appears to break some of the stratigraphic comparison between the upper Transvaal Supergroup on the Kaapvaal Craton
and the Turee Creek Group on the Pilbara Craton. In addition, a new late Paleoproterozoic mafic dyke swarm, the Tsineng swarm, is presented for the western Kaapvaal Craton in Alebouyeh Semami et al. (2016), which is correlated with Hartley Formation volcanism in the Olifantshoek Supergroup. This magmatic
event may also define a new LIP on the western Kaapvaal Craton. This mafic dyke swarm and its associated volcanism has also not been documented on the
Pilbara Craton.

Instead, it is proposed that the Pilbara and Kaapvaal cratons were part of a much larger continent or supercontinent in the Neoarchean to Paleoproterozoic.
This large crustal block likely included the Wyoming, Superior and Hearne cratons of North America, together with the Kola-Karelia Craton located between Russia and Finland, as well as possibly the Singhbhum Craton of India and the Samartia terrane of Russia and Ukraine. This continent or supercontinent, termed ‘Supervaalbara’ here, allows for the Kaapvaal and Pilbara cratons to share many geological similarities without being nearest neighbours, along possibly
the same passive margin. The geological evolution of all these cratons is very similar, particularly in the Paleoproterozoic, and which may have been driven by
global processes. These global processes may include true polar wander, the submergence and subsequent remergence of continents with sea-level rise and fall, as well as atmospheric oxygenation and global glaciation. Paleomagnetic studies provide further continuity supporting the existence of Supervaalbara, which appears geologically distinct from the Rae family of cratons, suggesting perhaps two different continents in the early Paleoproterozoic before the assembly of the supercontinent Columbia (Nuna) in the late Paleoproterozoic. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Professor Hanson, Richard, Texas Christian University, Fort Worth, TX, USA
organization
publishing date
type
Thesis
publication status
submitted
subject
keywords
Vaalbara, Kaapvaal Craton, Pilbara Craton, U-Pb geochronology, paleomagnetism, supercontinent, large igneous province, dyke swarm, sill province
pages
130 pages
publisher
Lund University, Faculty of Science, Department of Geology, Lithosphere and Biosphere Science
defense location
Lecture hall “Pangea”, Geocentrum II, Sölvegatan 12, Lund
defense date
2017-09-22 13:00
ISBN
978-91-87847-32-5
language
English
LU publication?
yes
id
f793a8c6-7c99-40f2-980b-4e66ed0fe5dc
date added to LUP
2017-08-20 16:29:07
date last changed
2017-09-04 10:49:12
@phdthesis{f793a8c6-7c99-40f2-980b-4e66ed0fe5dc,
  abstract     = {In this thesis, the longevity and continuity of the Vaalbara supercraton is addressed in six papers aimed at placing new temporal and spatial constraints on<br/>the supercraton in the Mesoarchean to Paleoproterozoic. It has been speculated since the 1960’s that the Kaapvaal Craton in southern Africa, together with<br/>the Pilbara Craton in Western Australia existed as a single landmass during the Precambrian – the Vaalbara supercraton. Many studies have demonstrated the<br/>geological similarities between the cratons, particularly in terms of their Mesoarchean to Paleoproterozoic unconformity-bounded sequences. These unconformity-bounded sequences have continuously been refined and developed, especially since the 1990’s. The first main stratigraphic similarities lie in the volcanic and sedimentary successions found in the Neoarchean Fortescue Group and Ventersdorp Supergroup basins on the Pilbara and Kaapvaal cratons, respectively, along with other associated basins. The unconformably overlying Hammersley (and Turee Creek) Group and Transvaal Supergroup on the Pilbara and Kaapvaal cratons, respectively, also show many stratigraphic similarities, and both host world-class deposits of hydrothermally-upgraded iron formations. However, no marker beds or precise age matches have yet been made, especially in the extensive Mesoarchean to Paleoproterozoic mafic dyke swarms and sill provinces present in each craton from the time interval discussed in this thesis. Regardless, the geological discussions has been aided by geochronological and paleomagnetic studies, which have both credited and discredited the existence of the Pilbara and Kaapvaal cratons as nearest neighbours for the time interval between ca. 2.87 Ga and ca. 2.65 Ga.<br/><br/>In this thesis, the so-called magmatic barcode record of large igneous provinces (LIPs), which are extensive and short-lived volcanic events, of the Kaapvaal<br/>Craton is presented together with that of the Pilbara Craton in conjunction with previous geochronological and paleomagnetic studies. This magmatic barcode<br/>record refines temporal, and through paleomagnetism, spatial constraints, and invalidates the existence of Vaalbara as a distinct continuous supercraton. Magmatic and paleomagnetic linkages between the 2.99-2.98 Ga Usushwana Complex on the Kaapvaal Craton and the ca. 2.87 Ga Millindinna Complex on the<br/>Pilbara Craton are shown to be incorrect with new ages for the Usushwana Complex and Badplaas dyke swarm presented in Gumsley et al. (2015). Extensive<br/>mafic dyke swarms associated with Neoarchean Fortescue volcanism on the Pilbara Craton and Ventersdorp volcanism on the Kaapvaal Craton also show less<br/>similarities from new paleomagnetic and geochronological constraints. These constraints are presented in Gumsley et al. (2016) and Evans et al. (2017) for the<br/>newly identified White Mfolozi and Black Range mafic dyke swarms, respectively, on the Kaapvaal and Pilbara cratons. Gumsley et al. (2017) and Kampmann<br/>et al. (2015) also present a new LIP, the Ongeluk, on the Kaapvaal Craton which has not been identified on the Pilbara Craton. This new LIP is composed of<br/>the Ongeluk Formation in the Transvaal Supergroup on the western margin of the Kaapvaal Craton, as well as the Westerberg Sill Province and a north-trending<br/>mafic dyke swarm. The Ongeluk LIP appears to break some of the stratigraphic comparison between the upper Transvaal Supergroup on the Kaapvaal Craton<br/>and the Turee Creek Group on the Pilbara Craton. In addition, a new late Paleoproterozoic mafic dyke swarm, the Tsineng swarm, is presented for the western Kaapvaal Craton in Alebouyeh Semami et al. (2016), which is correlated with Hartley Formation volcanism in the Olifantshoek Supergroup. This magmatic<br/>event may also define a new LIP on the western Kaapvaal Craton. This mafic dyke swarm and its associated volcanism has also not been documented on the<br/>Pilbara Craton.<br/><br/>Instead, it is proposed that the Pilbara and Kaapvaal cratons were part of a much larger continent or supercontinent in the Neoarchean to Paleoproterozoic.<br/>This large crustal block likely included the Wyoming, Superior and Hearne cratons of North America, together with the Kola-Karelia Craton located between Russia and Finland, as well as possibly the Singhbhum Craton of India and the Samartia terrane of Russia and Ukraine. This continent or supercontinent, termed ‘Supervaalbara’ here, allows for the Kaapvaal and Pilbara cratons to share many geological similarities without being nearest neighbours, along possibly<br/>the same passive margin. The geological evolution of all these cratons is very similar, particularly in the Paleoproterozoic, and which may have been driven by<br/>global processes. These global processes may include true polar wander, the submergence and subsequent remergence of continents with sea-level rise and fall, as well as atmospheric oxygenation and global glaciation. Paleomagnetic studies provide further continuity supporting the existence of Supervaalbara, which appears geologically distinct from the Rae family of cratons, suggesting perhaps two different continents in the early Paleoproterozoic before the assembly of the supercontinent Columbia (Nuna) in the late Paleoproterozoic.},
  author       = {Gumsley, Ashley},
  isbn         = {978-91-87847-32-5},
  keyword      = {Vaalbara,Kaapvaal Craton,Pilbara Craton,U-Pb geochronology,paleomagnetism,supercontinent,large igneous province,dyke swarm,sill province},
  language     = {eng},
  pages        = {130},
  publisher    = {Lund University, Faculty of Science, Department of Geology, Lithosphere and Biosphere Science},
  school       = {Lund University},
  title        = {Validating the existence of the supercraton Vaalbara in the Mesoarchaean to Palaeoproterozoic},
  year         = {2017},
}