Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Rivet user manual

Buckley, Andy ; Butterworth, Jonathan ; Grellscheid, David ; Hoeth, Hendrik LU ; Lönnblad, Leif LU orcid ; Monk, James ; Schulz, Holger and Siegert, Frank (2013) In Computer Physics Communications 184(12). p.2803-2819
Abstract
This is the manual and user guide for the Rivet system for the validation and tuning of Monte Carlo event generators. As well as the core Rivet library, this manual describes the usage of the rivet program and the AGILe generator interface library. The depth and level of description is chosen for users of the system, starting with the basics of using validation code written by others, and then covering sufficient details to write new Rivet analyses and calculational components. Program summary Program title: Rivet Catalogue identifier: AEPS_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEPS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC... (More)
This is the manual and user guide for the Rivet system for the validation and tuning of Monte Carlo event generators. As well as the core Rivet library, this manual describes the usage of the rivet program and the AGILe generator interface library. The depth and level of description is chosen for users of the system, starting with the basics of using validation code written by others, and then covering sufficient details to write new Rivet analyses and calculational components. Program summary Program title: Rivet Catalogue identifier: AEPS_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEPS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 571126 No. of bytes in distributed program, including test data, etc.: 4717522 Distribution format: tar.gz Programming language: C++, Python. Computer: PC running Linux, Mac. Operating system: Linux, Mac OS. RAM: 20 MB Classification: 11.9, 11.2. External routines: HepMC (https://savannah.cern.ch/projects/hepmc/), GSL (http://www.gnu.org/software/gsl/manual/gsl-ref.html), FastJet (http://fastjet.fr/), Python (http://www.python.org/), Swig (http://www.swig.org/), Boost (http://www.boostsoftware.com/), YAML (http://www.yaml.org/spec/1.2/spec.html) Nature of problem: Experimental measurements from high-energy particle colliders should be defined and stored in a general framework such that it is simple to compare theory predictions to them. Rivet is such a framework, and contains at the same time a large collection of existing measurements. Solution method: Rivet is based on HepMC events, a standardised output format provided by many theory simulation tools. Events are processed by Rivet to generate histograms for the requested list of analyses, incorporating all experimental phase space cuts and histogram definitions. Restrictions: Cannot calculate statistical errors for correlated events as they appear in NLO calculations. Unusual features: It is possible for the user to implement and use their own custom analysis as a module without having to modify the main Rivet code/installation. Running time: Depends on the number and complexity of analyses being applied, but typically a few hundred events per second. (C) 2013 Elsevier B.V. All rights reserved. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Event generator, Simulation, Validation, Tuning, QCD
in
Computer Physics Communications
volume
184
issue
12
pages
2803 - 2819
publisher
Elsevier
external identifiers
  • wos:000328725200020
  • scopus:84888299863
ISSN
0010-4655
DOI
10.1016/j.cpc.2013.05.021
language
English
LU publication?
yes
id
f8554ad4-86a7-4ab4-b276-6d04e6885758 (old id 4269048)
date added to LUP
2016-04-01 13:25:29
date last changed
2024-04-10 05:36:48
@article{f8554ad4-86a7-4ab4-b276-6d04e6885758,
  abstract     = {{This is the manual and user guide for the Rivet system for the validation and tuning of Monte Carlo event generators. As well as the core Rivet library, this manual describes the usage of the rivet program and the AGILe generator interface library. The depth and level of description is chosen for users of the system, starting with the basics of using validation code written by others, and then covering sufficient details to write new Rivet analyses and calculational components. Program summary Program title: Rivet Catalogue identifier: AEPS_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEPS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 571126 No. of bytes in distributed program, including test data, etc.: 4717522 Distribution format: tar.gz Programming language: C++, Python. Computer: PC running Linux, Mac. Operating system: Linux, Mac OS. RAM: 20 MB Classification: 11.9, 11.2. External routines: HepMC (https://savannah.cern.ch/projects/hepmc/), GSL (http://www.gnu.org/software/gsl/manual/gsl-ref.html), FastJet (http://fastjet.fr/), Python (http://www.python.org/), Swig (http://www.swig.org/), Boost (http://www.boostsoftware.com/), YAML (http://www.yaml.org/spec/1.2/spec.html) Nature of problem: Experimental measurements from high-energy particle colliders should be defined and stored in a general framework such that it is simple to compare theory predictions to them. Rivet is such a framework, and contains at the same time a large collection of existing measurements. Solution method: Rivet is based on HepMC events, a standardised output format provided by many theory simulation tools. Events are processed by Rivet to generate histograms for the requested list of analyses, incorporating all experimental phase space cuts and histogram definitions. Restrictions: Cannot calculate statistical errors for correlated events as they appear in NLO calculations. Unusual features: It is possible for the user to implement and use their own custom analysis as a module without having to modify the main Rivet code/installation. Running time: Depends on the number and complexity of analyses being applied, but typically a few hundred events per second. (C) 2013 Elsevier B.V. All rights reserved.}},
  author       = {{Buckley, Andy and Butterworth, Jonathan and Grellscheid, David and Hoeth, Hendrik and Lönnblad, Leif and Monk, James and Schulz, Holger and Siegert, Frank}},
  issn         = {{0010-4655}},
  keywords     = {{Event generator; Simulation; Validation; Tuning; QCD}},
  language     = {{eng}},
  number       = {{12}},
  pages        = {{2803--2819}},
  publisher    = {{Elsevier}},
  series       = {{Computer Physics Communications}},
  title        = {{Rivet user manual}},
  url          = {{http://dx.doi.org/10.1016/j.cpc.2013.05.021}},
  doi          = {{10.1016/j.cpc.2013.05.021}},
  volume       = {{184}},
  year         = {{2013}},
}