Advanced

Electric Cars for Balancing Variable Power on Gotland

Mårtensson, Hampus LU (2019) In CODEN:LUTEDX/TEIE EIEM01 20182
Industrial Electrical Engineering and Automation
Abstract
The share of renewable power grows in the generation mix, wielding promises of substituting traditional CO2-intensive power production. In combination with the trend towards electrification of transport, opportunities are emerging to use electric vehicles for balancing the variability of the renewable power sources. This master thesis explores the potential for such balancing techniques, often referred to as smart charging (SC) or vehicle-to-grid (V2G), on the Swedish island of Gotland. For this purpose, a self-developed model is used, built to reflect the transport and power system on the island. The systems are simulated on minute scale during a year on Gotland. It is also examined, by means of a literature study, whether economic... (More)
The share of renewable power grows in the generation mix, wielding promises of substituting traditional CO2-intensive power production. In combination with the trend towards electrification of transport, opportunities are emerging to use electric vehicles for balancing the variability of the renewable power sources. This master thesis explores the potential for such balancing techniques, often referred to as smart charging (SC) or vehicle-to-grid (V2G), on the Swedish island of Gotland. For this purpose, a self-developed model is used, built to reflect the transport and power system on the island. The systems are simulated on minute scale during a year on Gotland. It is also examined, by means of a literature study, whether economic incentives and associated modes of participation encountered in scientific research are aligned with the driving forces and concerns of potential participants. The limited transmission capabilities between Gotland and the mainland together with the large generation of wind power on the island has resulted in the local energy company disallowing further installations of variable power. Therefore, examining these technologies in this context is of particular interest and the findings made here paint the picture of what is possible outside Gotland as well.

The SC and V2G systems are evaluated in three future cases with 100 percent electrification of passenger cars, altering the level of power generation between the levels of today and increased production scenarios covering 50 and 100 percent of the additional load from the electric cars, on an annual basis. It is found that suggested systems can increase the usage of locally produced power significantly for all cases and that the potential contribution grows, as variable power production is increased. Introducing a SC or V2G system and simultaneously increasing renewable power generation to cover the increased energy need from the electric car fleet, could lead to a reduction of energy import and export to and from the island. In the SC and V2G system yearly export values found from the simulations made are reduced from 4.4 GWh per year to 2.8 and 0.8 respectively and import is decreased from 612.1 GWh per year to 608.4 and 610.2 when production is increased, and the systems are implemented. The increased energy need for electric passenger cars would be equivalent to that which is provided by roughly 17 wind turbines rated at 3 MW. The amount of wind turbines are a sizeable investment but well in-line with regional and national ambitions.

The availability of the electric car fleet as a power sink is high and during the vast majority of the year the chargeable capacity is well comparable to the current transmission capacity to the mainland of 130 MW. Under current levels of power generation, the electric car fleet can be charged at rates of 189 and 191 MWh/h or more in the SC and V2G system respectively during 95 percent of the year. If the power generation is increased to cover the energy need of electric cars, the corresponding numbers are 138 and 183 MWh/h.

Furthermore, there seem to be a considerable interest in participation in SC and V2G systems. Most of the current economic incentives and modes of participation encountered in research, could likely be implemented in ways aligned with the concerns and driving forces of future electric car owners. The most commonly found concern being that of mobility restrictions resulting from participation is likely less problematic on Gotland due to the limited geographical extension of the island. Finally, it should be considered that while economic earnings are important, they only provide one of many viable paths for reaching out. Allowing for flexible modes of participation, communicating environmental benefits achieved and carefully minding data privacy issues are examples of important aspects to consider when launching SC and V2G systems. (Less)
Abstract (Swedish)
Andelen förnybar kraft växer i produktionsmixen, med löften om att ersätta traditionell fossilintensiv kraftproduktion. I kombination med en trend mot elektrifiering av transporter uppstår nya möjligheter som användning av elfordon för att hantera variabiliteten i förnybar kraftproduktion. Detta examensarbete utforskar potentialen i att använda sådana balanserande tekniker, ofta refererade till som smart charging (SC) eller vehicle-to-grid (V2G), på den svenska ön Gotland. För detta syfte har en självutvecklad modell använts, byggd baserad på transport- och kraftsystemet på ön. Med modellen simuleras ett år på Gotland i tidsskalan minuter. Genom en litteraturstudie undersöks även om ekonomiska incitament och deltagandeformer från gjorda... (More)
Andelen förnybar kraft växer i produktionsmixen, med löften om att ersätta traditionell fossilintensiv kraftproduktion. I kombination med en trend mot elektrifiering av transporter uppstår nya möjligheter som användning av elfordon för att hantera variabiliteten i förnybar kraftproduktion. Detta examensarbete utforskar potentialen i att använda sådana balanserande tekniker, ofta refererade till som smart charging (SC) eller vehicle-to-grid (V2G), på den svenska ön Gotland. För detta syfte har en självutvecklad modell använts, byggd baserad på transport- och kraftsystemet på ön. Med modellen simuleras ett år på Gotland i tidsskalan minuter. Genom en litteraturstudie undersöks även om ekonomiska incitament och deltagandeformer från gjorda studier passar med de drivkrafter och orosmoment som potentiella framtida deltagare upplever.

Den begränsade transmissionskapaciteten mellan Gotland och fastlandet, tillsammans med den stora mängden vindkraft på ön resulterade i att det lokala energibolaget förbjöd ytterligare installationer av variabel kraftproduktion under 2017. På grund av detta erbjuder ön ett särskilt intressant sammanhang för teknikerna men funna resultat målar även upp en bild över av vad som är möjligt i en bredare kontext.

SC- och V2G-system är utvärderade i tre framtida fall, samtliga med en 100 procent elektrifierad personbilsflotta. I fallen varieras nivån på lokal kraftproduktion mellan dagens nivåer, ökad produktion för att på årsbasis även täcka elenergibehovet från elbilarna samt ett fall med en produktionsnivå mitt emellan de två. Resultaten visar att systemen kan öka användningen av lokalt producerade energi betydande i samtliga fall och de gynnsamma effekterna växer när kraftproduktionen på ön ökar. Om SC- eller V2G-system införs samtidigt som kraftproduktionen ökas för att täcka elbilarnas elenergibehov kan både export och import av energi, till och från ön, minskas. Exporten kan minskas från 4,4 GWh till 2,8 och 0,8 GWh för SC- respektive V2G-systemet medan motsvarande minskning av import blir från 612,1 GWh till 608,4 och 610,2. Det ökade elenergibehovet från elbilarna motsvarar produktionen från 17 ytterligare vindturbiner med en märkeffekt om 3 MW vardera, på årsbasis.

Resultaten visar även att elbilar är en resurs med hög grad av tillgänglighet och under större delen av året är den ackumulerade laddkapaciteten hos in-pluggade bilar jämförbar med exportkapaciteten i fastlandskablarna (130 MW). Under nuvarande nivåer av kraftproduktion kan elbilar laddas med 189 och 191 MWh/h eller mer i SC- respektive V2G-systemet under 95 procent av året. När produktionsnivåerna höjs för att täcka elenergibehovet hos elbilar är de motsvarande siffrorna 138 respektive 183 MWh/h.

Litteraturen visar på ett betydande intresse för deltagande i SC- och V2G-system. De flesta ekonomiska incitamenten och deltagandeformerna som återfinns i studiematerialet kan sannolikt anpassas till funna drivkrafter och orosmoment. Det mest väldokumenterade orosmomentet om mobilitetsbegränsningar är sannolikt mindre problematiskt på Gotland, på grund av öns begränsade storlek. Litteraturen tyder även på att ekonomisk vinning är en viktig drivkraft men att den är långt ifrån den enda. Möjliggörande av flexibla deltagandeformer, kommunikation av miljönyttan från systemen och noggrann hantering datasäkerhetsfrågor är exempel på aspekter som är viktiga att ta i hänsyn. (Less)
Please use this url to cite or link to this publication:
author
Mårtensson, Hampus LU
supervisor
organization
alternative title
Elfordon för att balansera variabel förnybar kraft på Gotland
course
EIEM01 20182
year
type
H3 - Professional qualifications (4 Years - )
subject
keywords
Smart Charging, Scheduled Charging, Vehicle-to-Grid, Smart Grid, Balancing Variable Power, Wind Power, Participation, Electric Vehicles, Gotland
publication/series
CODEN:LUTEDX/TEIE
report number
5420
language
English
id
8974353
date added to LUP
2019-04-15 10:46:45
date last changed
2019-04-16 14:52:05
@misc{8974353,
  abstract     = {The share of renewable power grows in the generation mix, wielding promises of substituting traditional CO2-intensive power production. In combination with the trend towards electrification of transport, opportunities are emerging to use electric vehicles for balancing the variability of the renewable power sources. This master thesis explores the potential for such balancing techniques, often referred to as smart charging (SC) or vehicle-to-grid (V2G), on the Swedish island of Gotland. For this purpose, a self-developed model is used, built to reflect the transport and power system on the island. The systems are simulated on minute scale during a year on Gotland. It is also examined, by means of a literature study, whether economic incentives and associated modes of participation encountered in scientific research are aligned with the driving forces and concerns of potential participants. The limited transmission capabilities between Gotland and the mainland together with the large generation of wind power on the island has resulted in the local energy company disallowing further installations of variable power. Therefore, examining these technologies in this context is of particular interest and the findings made here paint the picture of what is possible outside Gotland as well.

The SC and V2G systems are evaluated in three future cases with 100 percent electrification of passenger cars, altering the level of power generation between the levels of today and increased production scenarios covering 50 and 100 percent of the additional load from the electric cars, on an annual basis. It is found that suggested systems can increase the usage of locally produced power significantly for all cases and that the potential contribution grows, as variable power production is increased. Introducing a SC or V2G system and simultaneously increasing renewable power generation to cover the increased energy need from the electric car fleet, could lead to a reduction of energy import and export to and from the island. In the SC and V2G system yearly export values found from the simulations made are reduced from 4.4 GWh per year to 2.8 and 0.8 respectively and import is decreased from 612.1 GWh per year to 608.4 and 610.2 when production is increased, and the systems are implemented. The increased energy need for electric passenger cars would be equivalent to that which is provided by roughly 17 wind turbines rated at 3 MW. The amount of wind turbines are a sizeable investment but well in-line with regional and national ambitions. 

The availability of the electric car fleet as a power sink is high and during the vast majority of the year the chargeable capacity is well comparable to the current transmission capacity to the mainland of 130 MW. Under current levels of power generation, the electric car fleet can be charged at rates of 189 and 191 MWh/h or more in the SC and V2G system respectively during 95 percent of the year. If the power generation is increased to cover the energy need of electric cars, the corresponding numbers are 138 and 183 MWh/h. 

Furthermore, there seem to be a considerable interest in participation in SC and V2G systems. Most of the current economic incentives and modes of participation encountered in research, could likely be implemented in ways aligned with the concerns and driving forces of future electric car owners. The most commonly found concern being that of mobility restrictions resulting from participation is likely less problematic on Gotland due to the limited geographical extension of the island. Finally, it should be considered that while economic earnings are important, they only provide one of many viable paths for reaching out. Allowing for flexible modes of participation, communicating environmental benefits achieved and carefully minding data privacy issues are examples of important aspects to consider when launching SC and V2G systems.},
  author       = {Mårtensson, Hampus},
  keyword      = {Smart Charging,Scheduled Charging,Vehicle-to-Grid,Smart Grid,Balancing Variable Power,Wind Power,Participation,Electric Vehicles,Gotland},
  language     = {eng},
  note         = {Student Paper},
  series       = {CODEN:LUTEDX/TEIE},
  title        = {Electric Cars for Balancing Variable Power on Gotland},
  year         = {2019},
}