Advanced

Electronic Control Unit for Automatic Control of Torque Vectoring

Huzell, John LU and Göransson, Johan LU (2020) In CODEN:LUTEDX/TEIE EIEM01 20192
Industrial Electrical Engineering and Automation
Abstract
Torque vectoring for automobiles is used to increase cornering speeds and improve road safety by manipulating the car's wheel-speeds. One method of torque vectoring for a rear-wheel-drive Formula Student race car is using a dual-clutch to slip the inner wheel thus create a yaw moment during cornering.

The goal of this thesis was to develop and design an electronic control unit to automatically control the two clutches to achieve the target yaw moment. By building on the previous development of a dual-clutch and a theoretical control model, this thesis was delimited to the implementation of a control algorithm on the hardware used to control the dual-clutch.

Ulrich and Eppinger's product development method was used to develop an... (More)
Torque vectoring for automobiles is used to increase cornering speeds and improve road safety by manipulating the car's wheel-speeds. One method of torque vectoring for a rear-wheel-drive Formula Student race car is using a dual-clutch to slip the inner wheel thus create a yaw moment during cornering.

The goal of this thesis was to develop and design an electronic control unit to automatically control the two clutches to achieve the target yaw moment. By building on the previous development of a dual-clutch and a theoretical control model, this thesis was delimited to the implementation of a control algorithm on the hardware used to control the dual-clutch.

Ulrich and Eppinger's product development method was used to develop an initial alpha-prototype for proof-of-concept development. A beta-prototype was then developed to control the dual-clutch via a Controller Area Network (CAN), before being packaged into a final product, the Torque Vectoring Electronic Control Unit (TVECU).

The final product resulted in an electronic control unit capable of being mounted to a mechanical dual-clutch and regulating two Gen6 clutch actuators, thereby controlling the yaw moment. It can then be used to test, validate and further develop a dual-clutch torque vectoring system, and lays the foundations for a next-generation commercial model. (Less)
Abstract (Swedish)
Momentvektorering uppnås genom att manipulera bilens hjulhastigheter, i syfte att öka kurvhastigheterna och förbättra trafiksäkerheten. En dubbelkoppling på bakaxeln är en möjlig vektoreringsmetod för en bakhjulsdriven Formula Student-bil. Dubbelkopplingen gör att det inre hjulet kan glida och därmed skapa ett vridmoment kring bilens kropp i kurvans färdriktning.

Målet med examensarbetet var att undersöka och utveckla en elektronisk styrenhet för att automatiskt styra de två kopplingarna i syfte att uppnå önskat vridmoment. Genom att bygga vidare på tidigare utveckling av en dubbelkoppling och en teoretisk styrmodell avgränsades examensarbetet till implementeringen av en kontrollalgoritm på en elektronisk styrenhet.

Ulrich och... (More)
Momentvektorering uppnås genom att manipulera bilens hjulhastigheter, i syfte att öka kurvhastigheterna och förbättra trafiksäkerheten. En dubbelkoppling på bakaxeln är en möjlig vektoreringsmetod för en bakhjulsdriven Formula Student-bil. Dubbelkopplingen gör att det inre hjulet kan glida och därmed skapa ett vridmoment kring bilens kropp i kurvans färdriktning.

Målet med examensarbetet var att undersöka och utveckla en elektronisk styrenhet för att automatiskt styra de två kopplingarna i syfte att uppnå önskat vridmoment. Genom att bygga vidare på tidigare utveckling av en dubbelkoppling och en teoretisk styrmodell avgränsades examensarbetet till implementeringen av en kontrollalgoritm på en elektronisk styrenhet.

Ulrich och Eppingers produktutvecklingsmetod användes för att utveckla en initial alfa-prototyp för konceptutveckling. En beta-prototyp utvecklades sedan för att styra dubbelkopplingen via "Controller Area Network" (CAN), innan den förpackades i en slutprodukt, kallad "Torque Vectoring Electronic Control Unit" (TVECU).

Slutprodukten resulterade i en elektronisk styrenhet designad för att monteras på en mekanisk dubbelkoppling och styra två Gen6-aktuatorer. Den kan sedan användas för att testa, verifiera och vidareutveckla ett momentvektoreringssystem och lägger grunden för nästa generations kommersiella modell. (Less)
Please use this url to cite or link to this publication:
author
Huzell, John LU and Göransson, Johan LU
supervisor
organization
course
EIEM01 20192
year
type
H3 - Professional qualifications (4 Years - )
subject
keywords
torque vectoring, electronic control unit, automatic control, yaw moment, CAN, PCB, Formula Student
publication/series
CODEN:LUTEDX/TEIE
report number
5432
language
English
id
9005911
date added to LUP
2020-05-14 16:27:57
date last changed
2020-05-14 16:27:57
@misc{9005911,
  abstract     = {Torque vectoring for automobiles is used to increase cornering speeds and improve road safety by manipulating the car's wheel-speeds. One method of torque vectoring for a rear-wheel-drive Formula Student race car is using a dual-clutch to slip the inner wheel thus create a yaw moment during cornering.

The goal of this thesis was to develop and design an electronic control unit to automatically control the two clutches to achieve the target yaw moment. By building on the previous development of a dual-clutch and a theoretical control model, this thesis was delimited to the implementation of a control algorithm on the hardware used to control the dual-clutch.

Ulrich and Eppinger's product development method was used to develop an initial alpha-prototype for proof-of-concept development. A beta-prototype was then developed to control the dual-clutch via a Controller Area Network (CAN), before being packaged into a final product, the Torque Vectoring Electronic Control Unit (TVECU).

The final product resulted in an electronic control unit capable of being mounted to a mechanical dual-clutch and regulating two Gen6 clutch actuators, thereby controlling the yaw moment. It can then be used to test, validate and further develop a dual-clutch torque vectoring system, and lays the foundations for a next-generation commercial model.},
  author       = {Huzell, John and Göransson, Johan},
  keyword      = {torque vectoring,electronic control unit,automatic control,yaw moment,CAN,PCB,Formula Student},
  language     = {eng},
  note         = {Student Paper},
  series       = {CODEN:LUTEDX/TEIE},
  title        = {Electronic Control Unit for Automatic Control of Torque Vectoring},
  year         = {2020},
}