Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Evaluating Sugar Signaling during Xylose Oxidation in Saccharomyces cerevisiae

Persson, Viktor LU (2020) KMBM05 20201
Applied Microbiology
Abstract
The sugar signaling state of cells oxidizing xylose was investigated through the chromosomal integration of the Weimberg pathway into previously established biosensor strains capable of monitoring the Snf3p/Rgt2p, SNF1/Mig1p, and cAMP/PKA pathways through the expression of HXT1, SUC2, and TPS1, respectively. Ultimately, two new strains were successfully developed containing both the Weimberg pathway and a biosensor for either HXT1 (TMB CB 112) or TPS1 (TMB CB 117). Unfortunately, the SUC2-based Weimberg biosensor (TMB CB 115) showed impaired growth and seemingly lacked a diauxic shift, making it unable to assimilate xylose. As for xylose utilization, the working Weimberg biosensor strains showed xylose assimilation rates similar to the... (More)
The sugar signaling state of cells oxidizing xylose was investigated through the chromosomal integration of the Weimberg pathway into previously established biosensor strains capable of monitoring the Snf3p/Rgt2p, SNF1/Mig1p, and cAMP/PKA pathways through the expression of HXT1, SUC2, and TPS1, respectively. Ultimately, two new strains were successfully developed containing both the Weimberg pathway and a biosensor for either HXT1 (TMB CB 112) or TPS1 (TMB CB 117). Unfortunately, the SUC2-based Weimberg biosensor (TMB CB 115) showed impaired growth and seemingly lacked a diauxic shift, making it unable to assimilate xylose. As for xylose utilization, the working Weimberg biosensor strains showed xylose assimilation rates similar to the benchmark Weimberg pathway strain (TMB4586), which remained lower than that of the oxidoreductase pathway biosensor strains (TMB375X series). Aside from the difference in xylose assimilation, the growing Weimberg biosensor strains showed very similar metabolite profiles to both the reference Weimberg pathway strain (TMB4586) and the oxidoreductase biosensor strains (TMB375X series). A signaling assay over a 54-hour cultivation showed clear similarities between the Weimberg biosensors (TMB CB 112, TMB CB 117) and the oxidoreductase biosensors (TMB375X series), and the induction of SUC2 after glucose depletion indicated that the full “low glucose” signal may only arise once xylose begins being actively metabolized. Finally, a separate 6-hour cultivation was performed in different key media of interest. Interestingly, the Weimberg biosensor strains showed decreased bimodalities similar to the decrease seen after integration of the oxidoreductase pathway in the TMB375X series, indicating that integration of the Weimberg pathway may have a similar effect. (Less)
Popular Abstract
What does the yeast experience?

We all know that yeast is essential in the processes of both baking and brewing, but did you know that it is the exact same yeast that is used for these processes that is used in the biofuel industry? Unfortunately, an inefficiency has become apparent when it comes to producing biofuels from sustainable feedstocks, such as lignocellulose, as the cells fail to recognize all the nutrients in their surroundings. My master thesis is part of a bigger project that intends to figure out why the yeast misperceives a high concentration of the sugar xylose for a low concentration of glucose, with the ultimate goal being to enable the uptake of xylose for increased production of sustainable fuels and other... (More)
What does the yeast experience?

We all know that yeast is essential in the processes of both baking and brewing, but did you know that it is the exact same yeast that is used for these processes that is used in the biofuel industry? Unfortunately, an inefficiency has become apparent when it comes to producing biofuels from sustainable feedstocks, such as lignocellulose, as the cells fail to recognize all the nutrients in their surroundings. My master thesis is part of a bigger project that intends to figure out why the yeast misperceives a high concentration of the sugar xylose for a low concentration of glucose, with the ultimate goal being to enable the uptake of xylose for increased production of sustainable fuels and other chemicals.

The yeast Saccharomyces cerevisiae, commonly known as “Baker’s yeast”, is known to grow well on both glucose and fructose, the main constituents of table sugar. Since ancient times, this yeast’s ability to convert sugar to ethanol and carbon dioxide has been used to produce both food and drinks in the form of bread and beer. But in recent years, a new potential use-case for the ethanol has become increasingly of interest. Namely, the use of ethanol as a sustainable fuel – bioethanol.

Biofuel can be produced by fermentation of S. cerevisiae on waste products from the agricultural and forestry industries. These waste products contain high levels of the material lignocellulose, a complex composite of different polymers that is commonly known as the “woody” part of plants. Treatment of the lignocellulose in biorefineries releases large amount of sugars that can subsequently be used fermentation and the production of bioethanol. Although this method of biofuel production is widespread already, it unfortunately remains inefficient as not all sugars extracted from the lignocellulose can be used by the yeast. The treatment of lignocellulose releases not only glucose, but also the sugar xylose. And while the yeast is able to successfully consume both glucose and fructose, it is not able to do so for xylose. However, through large efforts over the past two decades and some very clever genetic engineering, yeast capable of xylose consumption were developed. Although, while the yeast proved capable of breaking down xylose, the rate of which it did so failed to match that of glucose breakdown. Eventually, it became apparent that the modified yeast may not be impaired by the inability to break down the xylose, but rather it may not be recognizing xylose as a sugar to break down in the first place.

My master thesis aimed to explore how yeast capable of xylose consumption perceived their environments. Starting from a yeast strain capable of fluorescing green when the cells were for example “feeling happy” or “starving”, we introduced an alternative way to break down xylose to explore if the way that xylose was consumed influenced the sensing of the sugar. Our results showed, among other things, that the cells perceiving their environment as low levels of glucose when really the environment had high concentrations of xylose only occurred once xylose was actively metabolized. Furthermore, we found that this perception of low glucose remained for two out of three signals regardless of which way xylose was broken down. These results represent an important step towards addressing xylose sensing and ultimately enable much needed efficient biofuel production. (Less)
Popular Abstract (Swedish)
Men vad känner egentligen jästen?

Vi känner alla till att det är jäst som används för att göra bröd och öl. Men visste du att det är precis samma jäst som används för mat och dryck som används för biobränsle? En ineffektivitet har dock uppenbarat sig i biobränsle-industrin, då jästen inte verkar känna av all näring i sin omgivning. Mitt projekt utgör ett viktigt steg i att lista ut varför jästen misstar höga koncentrationer av sockerarten xylos för låga koncentrationer av sockerarten glukos, och på så vis finna sätt att förbättra produktionen av till exempel förnyelsebara bränslen.

I vanliga fall trivs bakjästen Saccharomyces cerevisiae bäst i närvaro av sockerarten glukos, men den klarar också av att utnyttja andra sockerarter... (More)
Men vad känner egentligen jästen?

Vi känner alla till att det är jäst som används för att göra bröd och öl. Men visste du att det är precis samma jäst som används för mat och dryck som används för biobränsle? En ineffektivitet har dock uppenbarat sig i biobränsle-industrin, då jästen inte verkar känna av all näring i sin omgivning. Mitt projekt utgör ett viktigt steg i att lista ut varför jästen misstar höga koncentrationer av sockerarten xylos för låga koncentrationer av sockerarten glukos, och på så vis finna sätt att förbättra produktionen av till exempel förnyelsebara bränslen.

I vanliga fall trivs bakjästen Saccharomyces cerevisiae bäst i närvaro av sockerarten glukos, men den klarar också av att utnyttja andra sockerarter såsom fruktos. Det är bland annat därför vi tillsätter socker när vi bakar, som består till hälften av glukos och till hälften fruktos. Bakjästens förmåga att producera etanol och koldioxid via dessa sockerarter har utnyttjats sedan urminnes tider för att producera både mat och dryck. Men på senare tid har ett nytt användningsområde upptäckts för etanolen, nämligen förbränningen av den som ett förnyelsebart bränsle.

Ifall man låter jästen växa på till exempel restprodukter från skogs- och lantbruket, så kan man få etanol som är helt klimatneutralt – så kallad bioetanol. Restprodukterna från skogs- och lantbruket innehåller stora mängder lignocellulosa, den substans som gör att växterna blir ”träaktiga”. Med kemisk behandling kan stora mängder glukos frigöras från lignocellulosan, varpå jästen kan växa och producera bioetanol. Denna process används i stor utsträckning redan idag, men den förblir relativt ineffektiv då stora mängder av sockerarten xylos går till spillo. Det frigörs nämligen inte bara glukos från lignocellulosan vid den kemiska behandlingen, utan även xylos. Dessvärre, till skillnad från glukos och fruktos, klarar bakjästen inte av att konsumera xylosen. För att lösa detta problem genmodifierade man jästen, och introducerade gener för nedbrytning av xylos. Efter modifieringen kunde man se en ökning av jästens tillväxt, men det visade sig att jästen endast åt upp xylosen efter glukosen tagit helt slut. Efter många ”om och men” lyckades man konstatera att problemet låg i att jästen inte kände av xylosen som en potentiell näringskälla – även om de numera kunde äta den.

Mitt projekt gick ut på att undersöka hur jästen upplevde sin omgivning under olika betingelser. Vi utgick från modifierad jäst som kunde lysa grönt när jästen upplevde att den var till exempel ”nöjd” eller ”i brist på näring”. Till denna jäst tillsatte vi en ny nedbrytningsväg för xylos, och jämförde sedan med den jäst som inte kände av xylos för att se om det var sättet xylosen togs upp på som orsakade problemet. Våra resultat visade att signalen för ”låga glukosnivåer” endast slogs på först när xylos började brytas ned, samt att sättet xylosen bryts ned inte påverkar 2 av 3 signaler. Dessa resultat är en del av att lista ut hur xylos känns igen av jästen, och i slutändan ett viktigt steg för att möjliggöra effektiv produktion av förnyelsebara bränslen. (Less)
Please use this url to cite or link to this publication:
author
Persson, Viktor LU
supervisor
organization
alternative title
Utvärdering av socker signalering vid oxidation av xylos i Saccharomyces cerevisiae
course
KMBM05 20201
year
type
H2 - Master's Degree (Two Years)
subject
keywords
Saccharomyces cerevisiae, yeast, xylose oxidation, sugar signaling, biosensor, applied microbiology, teknisk mikrobiologi
language
English
id
9020563
date added to LUP
2020-06-25 13:39:13
date last changed
2020-06-25 13:39:13
@misc{9020563,
  abstract     = {{The sugar signaling state of cells oxidizing xylose was investigated through the chromosomal integration of the Weimberg pathway into previously established biosensor strains capable of monitoring the Snf3p/Rgt2p, SNF1/Mig1p, and cAMP/PKA pathways through the expression of HXT1, SUC2, and TPS1, respectively. Ultimately, two new strains were successfully developed containing both the Weimberg pathway and a biosensor for either HXT1 (TMB CB 112) or TPS1 (TMB CB 117). Unfortunately, the SUC2-based Weimberg biosensor (TMB CB 115) showed impaired growth and seemingly lacked a diauxic shift, making it unable to assimilate xylose. As for xylose utilization, the working Weimberg biosensor strains showed xylose assimilation rates similar to the benchmark Weimberg pathway strain (TMB4586), which remained lower than that of the oxidoreductase pathway biosensor strains (TMB375X series). Aside from the difference in xylose assimilation, the growing Weimberg biosensor strains showed very similar metabolite profiles to both the reference Weimberg pathway strain (TMB4586) and the oxidoreductase biosensor strains (TMB375X series). A signaling assay over a 54-hour cultivation showed clear similarities between the Weimberg biosensors (TMB CB 112, TMB CB 117) and the oxidoreductase biosensors (TMB375X series), and the induction of SUC2 after glucose depletion indicated that the full “low glucose” signal may only arise once xylose begins being actively metabolized. Finally, a separate 6-hour cultivation was performed in different key media of interest. Interestingly, the Weimberg biosensor strains showed decreased bimodalities similar to the decrease seen after integration of the oxidoreductase pathway in the TMB375X series, indicating that integration of the Weimberg pathway may have a similar effect.}},
  author       = {{Persson, Viktor}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Evaluating Sugar Signaling during Xylose Oxidation in Saccharomyces cerevisiae}},
  year         = {{2020}},
}