Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Hydrogen Hybrid Systems: Bridging the gap between grid capacity and electricity generation

Rosell, Edith LU and Lomgren, Sara LU (2024) MVKM01 20241
Department of Energy Sciences
Abstract
The expected increase in both consumption and production of electricity strains the Swedish electricity grid, necessitating both reinforcement and expansion. Concurrently, the need to decarbonise heavy industry is becoming more urgent to achieve the EU Climate neutrality goal by 2050, with hydrogen anticipated as a key player. Hybrid energy systems that combine the generation of renewable electricity with green hydrogen production can be an asset when the grid capacity is limited. Its demand in Sweden is driven by the green transition of the steel
industry in the north, where RWE, a multinational energy company, is looking at opportunities in offshore wind power. The case study aims to evaluate the business case of a hybrid energy system... (More)
The expected increase in both consumption and production of electricity strains the Swedish electricity grid, necessitating both reinforcement and expansion. Concurrently, the need to decarbonise heavy industry is becoming more urgent to achieve the EU Climate neutrality goal by 2050, with hydrogen anticipated as a key player. Hybrid energy systems that combine the generation of renewable electricity with green hydrogen production can be an asset when the grid capacity is limited. Its demand in Sweden is driven by the green transition of the steel
industry in the north, where RWE, a multinational energy company, is looking at opportunities in offshore wind power. The case study aims to evaluate the business case of a hybrid energy system projected for 2030, that combines the generation of electricity from an offshore wind power plant off the coast of Piteå, with the onshore production of green hydrogen using a PEM electrolyser in Luleå. The effects of varying the available grid capacity are studied in a scenario analysis using the Levelised Cost of Hydrogen (LCOH) as the decisive parameter. The study also aims to determine the effects of integrating a waste heat recovery system, repurposing excess heat into a district heating network. In addition, it also aims to identify the most influential model variables through a cost breakdown and sensitivity analysis. Finally, by accounting for the results and insights gathered from a literature review and through discussions with industry professionals, conclusions concerning the applicability of the results and the competitiveness of the green hydrogen produced is assessed.

The scenario analysis investigates four electrolyser system sizes, based on different available grid capacities. The results suggest that the production of green hydrogen is an economy of scale, with the LCOH ranging from 58 to 68 SEK/kg H2, for electrolyser peak capacities of 1 060 MW and 560 MW respectively. Each of the four system sizes investigated benefits from a waste heat recovery system, resulting in a 3-4% lower LCOH. The cost breakdown revealed that the electricity from the WPP had the largest contribution to the total costs, accounting for 67-
71%, depending on the scenario. The CAPEX of the electrolyser system was the second-largest cost factor, contributing 16-20% to the total costs. To identify the parameters with the largest effect on the results, a sensitivity analysis was performed. Key influencers (in descending order) were LCOE, lifetimes of the electrolyser and the hybrid system, cost of equity, and the electrolyser system CAPEX. Through the sensitivity analysis subsidies and loans also proved to have a great impact on the LCOH. The applicability of the results is determined by four main factors that proved to play an important role when designing the system and constructing the model; the system design, the system scale, geographical location, and the company structure and ownership. The competitiveness in a future hydrogen market is difficult to determine due to uncertainties in factors such as the available hydrogen infrastructure, cost of electricity generation, and the structure of hydrogen agreements. However, despite the uncertainties and
assumptions that have shaped the case study, the production of hydrogen from hybrid energy systems such as those studied shows promising results with the expected increase in both heat and hydrogen demand in Luleå. Future research could expand the existing knowledge base by investigating different future scenarios and technology variations to understand how hybrid systems can become more cost and resource-efficient, thereby strengthening their role in Sweden’s future energy system. (Less)
Popular Abstract (Swedish)
Den svenska elkonsumtionen och elproduktionen förväntas öka drastiskt de närmsta åren. Detta ställer krav på elnätet som därmed behöver stärkas och byggas ut för att tillvarata den el som förväntas. Parallellt med detta behöver den gröna omställningen av industrisektorn påskydas om EU ska lyckas uppnå klimatmålen till 2050. För att dekarbonisera industriella processer kan grön vätgas användas. Genom att etablera hybridsystem som kombinerar produktion av förnybar elektricitet med grön vätgas kan flera nödvändiga systemnyttor uppnås;elnätet avlastas och el samt vätgas produceras. RWE är ett multinationellt energiföretag, med särskilt fokus på vindkraft, som har insett möjligheterna för hybridsystem i norra Sverige. De undersöker... (More)
Den svenska elkonsumtionen och elproduktionen förväntas öka drastiskt de närmsta åren. Detta ställer krav på elnätet som därmed behöver stärkas och byggas ut för att tillvarata den el som förväntas. Parallellt med detta behöver den gröna omställningen av industrisektorn påskydas om EU ska lyckas uppnå klimatmålen till 2050. För att dekarbonisera industriella processer kan grön vätgas användas. Genom att etablera hybridsystem som kombinerar produktion av förnybar elektricitet med grön vätgas kan flera nödvändiga systemnyttor uppnås;elnätet avlastas och el samt vätgas produceras. RWE är ett multinationellt energiföretag, med särskilt fokus på vindkraft, som har insett möjligheterna för hybridsystem i norra Sverige. De undersöker möjligheterna för en havsbaserad vindkraftspark som skulle kunna kombineras med vätgasproduktion. Denna studie syftar till att utvärdera affärsmodellen för ett sådant hybridsystem. Hybrisystemet i studien planeras till 2030 med en vindkraftspark utanför Piteås kust och en landbaserad vätgasproduktion
med PEM-elektrolys i Luleå. I en scenarioanalys undersöks effekterna av att variera den tillgängliga elnätkapaciteten genom att beräkna och använda LCOH som jämförande parameter. Studien syftar också till att fastställa effekterna av att tillvarata restvärme från elektrolysören för användning i ett fjärrvärmenät. Dessutom identifieras de mest betydelsefulla parametrarna genom en kostnadsuppdelning och känslighetsanalys. Slutligen utvärderas resultatets applicerbarhet och konkurrenskraft med stöd från tidigare forskning samt diskussioner med branschkunniga.
Baserat på olika storlekar på elnätsuppkoppling undersöktes i scenarioanalysen fyra storlekar på elektrolyssystem. Det resulterande värdet på LCOH varierarde mellan 58-68 SEK/kg H2 och visade på skalfördelar, med ökad elektrolysörstorlek minskade värdet på LCOH. Samtliga system nyttjade restvärmeåtervinning som sänkte värdet på LCOH med 3-4%. Utifrån kostnadsuppdelningen identifierades elektriciteten från vindkraftparken dessutom som parametern med störst påverkan på resultatet och stod för 67-71% av den totala kostnaden. Därefter följde CAPEX för elektrolyssystemet om utgjorde 16-20% av den totala kostnaden. Vidare utfördes en känslighetsanalys där resultatet var mest känsligt för förändringar av (i fallande ordning) LCOE, livslängd på elektrolysör och hybridsystem, kostnad för eget kapital och CAPEX
för elektrolyssystemet. Lån och bidrag hade också stor påverkan på resultatet. Studiens applicerbarhet utvärderades sedan utifrån fyra faktorer; systemdesign, skalbarhet, geografisk placering och företags- samt ägandestruktur. På grund av osäkerheter kring exempelvis framtida
vätgasinfrastruktur, kostnader för elproduktion och utformning av vätgasavtal var det svårt att bedöma resultatets konkurrenskraft.
Trots osäkerheter i studiens utformning och antaganden, visar det ökade behovet av värme och vätgas i Luleå på goda förutsättningar för etablering av hyrbidsystem i området. Fortsatt forskning kan dessutom bidra med ökad kunskap genom att exempelvis undersöka olika framtidsscenarier och tekniker. Detta ökar även förmågan att utforma kostnads- och resurseffektiva hybridsystem, vilka kan ha en betydande roll i Sveriges framtida energisys. (Less)
Please use this url to cite or link to this publication:
author
Rosell, Edith LU and Lomgren, Sara LU
supervisor
organization
course
MVKM01 20241
year
type
H2 - Master's Degree (Two Years)
subject
keywords
Green hydrogen, Hybrid energy system, Wind power, Waste heat recovery
report number
ISRN LUTMDN/TMHP-24/5566-SE
ISSN
0282-1990
language
English
id
9167758
date added to LUP
2024-06-28 14:52:19
date last changed
2024-06-28 14:52:19
@misc{9167758,
  abstract     = {{The expected increase in both consumption and production of electricity strains the Swedish electricity grid, necessitating both reinforcement and expansion. Concurrently, the need to decarbonise heavy industry is becoming more urgent to achieve the EU Climate neutrality goal by 2050, with hydrogen anticipated as a key player. Hybrid energy systems that combine the generation of renewable electricity with green hydrogen production can be an asset when the grid capacity is limited. Its demand in Sweden is driven by the green transition of the steel
industry in the north, where RWE, a multinational energy company, is looking at opportunities in offshore wind power. The case study aims to evaluate the business case of a hybrid energy system projected for 2030, that combines the generation of electricity from an offshore wind power plant off the coast of Piteå, with the onshore production of green hydrogen using a PEM electrolyser in Luleå. The effects of varying the available grid capacity are studied in a scenario analysis using the Levelised Cost of Hydrogen (LCOH) as the decisive parameter. The study also aims to determine the effects of integrating a waste heat recovery system, repurposing excess heat into a district heating network. In addition, it also aims to identify the most influential model variables through a cost breakdown and sensitivity analysis. Finally, by accounting for the results and insights gathered from a literature review and through discussions with industry professionals, conclusions concerning the applicability of the results and the competitiveness of the green hydrogen produced is assessed.

The scenario analysis investigates four electrolyser system sizes, based on different available grid capacities. The results suggest that the production of green hydrogen is an economy of scale, with the LCOH ranging from 58 to 68 SEK/kg H2, for electrolyser peak capacities of 1 060 MW and 560 MW respectively. Each of the four system sizes investigated benefits from a waste heat recovery system, resulting in a 3-4% lower LCOH. The cost breakdown revealed that the electricity from the WPP had the largest contribution to the total costs, accounting for 67-
71%, depending on the scenario. The CAPEX of the electrolyser system was the second-largest cost factor, contributing 16-20% to the total costs. To identify the parameters with the largest effect on the results, a sensitivity analysis was performed. Key influencers (in descending order) were LCOE, lifetimes of the electrolyser and the hybrid system, cost of equity, and the electrolyser system CAPEX. Through the sensitivity analysis subsidies and loans also proved to have a great impact on the LCOH. The applicability of the results is determined by four main factors that proved to play an important role when designing the system and constructing the model; the system design, the system scale, geographical location, and the company structure and ownership. The competitiveness in a future hydrogen market is difficult to determine due to uncertainties in factors such as the available hydrogen infrastructure, cost of electricity generation, and the structure of hydrogen agreements. However, despite the uncertainties and
assumptions that have shaped the case study, the production of hydrogen from hybrid energy systems such as those studied shows promising results with the expected increase in both heat and hydrogen demand in Luleå. Future research could expand the existing knowledge base by investigating different future scenarios and technology variations to understand how hybrid systems can become more cost and resource-efficient, thereby strengthening their role in Sweden’s future energy system.}},
  author       = {{Rosell, Edith and Lomgren, Sara}},
  issn         = {{0282-1990}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Hydrogen Hybrid Systems: Bridging the gap between grid capacity and electricity generation}},
  year         = {{2024}},
}