Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

Novel strategy to synthesize homonuclear cubic heteroleptic metal-organic cages using Ruthenium(II) complexes and N-donor ligands : Synthesis, Characterization, Complexation, and Attempts

Larsson, George LU (2025) KEMR30 20242
Department of Chemistry
Abstract
Metal-Organic Frameworks (MOF) are a group of polymeric porous self-assembly structures consisting of a combination of coordinated metal ions and organic-linker molecules resulting in supramolecules with one-, two- or three-dimensional structures. The porosity of the macromolecule allows smaller molecules to enter and remain coordinated via intermolecular interactions, therefore the potential use as molecule containers, catalysts, and enzyme mimics has always been a huge topic of discussion over the decades. The smallest unit of a MOF is referred to as a metal-organic cage (MOC) and its attention is on the rise due to being superior in all the tasks mentioned due to its increased pore accessibility. Several structures of homoleptic (all... (More)
Metal-Organic Frameworks (MOF) are a group of polymeric porous self-assembly structures consisting of a combination of coordinated metal ions and organic-linker molecules resulting in supramolecules with one-, two- or three-dimensional structures. The porosity of the macromolecule allows smaller molecules to enter and remain coordinated via intermolecular interactions, therefore the potential use as molecule containers, catalysts, and enzyme mimics has always been a huge topic of discussion over the decades. The smallest unit of a MOF is referred to as a metal-organic cage (MOC) and its attention is on the rise due to being superior in all the tasks mentioned due to its increased pore accessibility. Several structures of homoleptic (all organic linkers are the same) MOCs have been synthesized within these few decades but the interest of heteroleptic (variety of linkers) MOCs is on the rise due to their further versatile usage in comparisons to homoleptic structures. However, a problem is the fact that heteroleptic MOCs are structures that require difficult synthesis strategies in order to achieve the wanted product, hence demand complicated calculations and extensive understanding of the properties of the materials.
In this work we propose and test a brand-new strategy to synthesize heteroleptic three-dimensional cubic MOCs, which will significantly aid future projects to synthesize cubic MOCs. The approach is robust and controlled ultimately allowing solely one type of structure to form, by using octahedral ruthenium(II) acting as corners of the cube and three different organic-linker ligands to connect the metal centers. Over the span of a year this work was divided into two parts where: 1) Metal-anchor complexes and organic-linker ligands synthesis including characterization, 2) Self-assembly complexation of the metal and ligands. The first part consisted of synthesizing and characterizing four different organic-linker ligands and their intermediates, in addition to the synthetic route of the ruthenium metal centers. The second part was the self-assembly complexation of the ruthenium complexes.
Unfortunately, this work was not able to reach the final structure within time hence the furthest step achieved was potentially the first complexation step of the MOC out of three. The uncertainty of the result stems from the fact that characteristics of complexation are exhibited via NMR spectroscopy, yet due to requiring additional time to assemble it was not possible to extract the product and fully confirm its existence. For future studies, we suggest investigating more effective methods to self-assemble the complex or reviewing the metal-anchors to contain more labile ligands allowing quicker assembly to take place. (Less)
Popular Abstract (Swedish)
Supramolekylär kemi är ett ämne där formationen av molekylära sammansättningar och deras interaktioner undersöks, innebärande en kombination av både organisk kemi och oorganisk kemi. Ämnet omfattar bindningen av metallkomplex med organiska ligander där hela metalkomplexet kan ses som en atom medan liganderna är själva bindningarna, vilket resulterar i supramolekylära komplex av olika form och storlek. På grund av deras möjligheter och mångsidiga användning har intresset för att syntetisera sådana supramolekyler ökat dramatiskt under de senaste årtiondena. Dessa supramolekyler kan bland annat användas till lagring av molekyler, som molekylära sensorer, i läkemedel och mediciner, för katalysatorer, vid imitering av enzym och för att binda... (More)
Supramolekylär kemi är ett ämne där formationen av molekylära sammansättningar och deras interaktioner undersöks, innebärande en kombination av både organisk kemi och oorganisk kemi. Ämnet omfattar bindningen av metallkomplex med organiska ligander där hela metalkomplexet kan ses som en atom medan liganderna är själva bindningarna, vilket resulterar i supramolekylära komplex av olika form och storlek. På grund av deras möjligheter och mångsidiga användning har intresset för att syntetisera sådana supramolekyler ökat dramatiskt under de senaste årtiondena. Dessa supramolekyler kan bland annat användas till lagring av molekyler, som molekylära sensorer, i läkemedel och mediciner, för katalysatorer, vid imitering av enzym och för att binda tungmetaller eller kärnavfall. Följaktligen har intresset för dessa komplex drastiskt ökat inom områden som bio-, läkemedel-, jordbruks-, även miljökemi och varje år publiceras nya strukturer med intressanta tillämpningar.
En majoritet av dessa supramolekylära komplex innehåller samma typ av ligander som kopplar till metallerna, vilket gör dem homoleptiska. Funktionaliteten av ett supramolekylärt komplex beror huvudsakligen på vilka organiska ligander som är bundna till det. Detta betyder att om en variation av olika ligander är kopplade, vilket gör komplexet heteroleptiskt, kommer dess funktionalitet att öka väsentligt och även dess användbarhet. Ett kritiskt problem är dock att heteroleptiska supramolekyler inte är enkla att syntetisera på grund av deras komplicerade karaktär, vilket kräver betydande arbete och en stor förståelse för ämnenas egenskaper. Det finns flera metoder för att syntetisera heteroleptiska supramolekyler, dock kräver alla dessa metoder gedigna insikter beträffande metallkomplexen och de organiska liganderna, samt i många fall även avancerad strukturmodellering. Nuvarande metoder för att syntetisera heteroleptiska supramolekyler saknar effektivitet och robusthet.
I detta arbete föreslås och undersöks en helt ny strategi för att speciellt syntetisera kubiska heteroleptiska supramolekylära komplex via en kontrollerad och robust metod, vilken använder övergångsmetallen rutenium som kommer att vara hörnen på kuben. Ett flertal steg i denna metod har framgångsrikt genomförts i föreliggande arbete och om slutsteget i denna metod lyckas kommer det att förenkla syntesen av heteroleptiska supramolekylära kuber, vilket kommer att hjälpa framtida synteser av heteroleptiska supramolekyler. (Less)
Please use this url to cite or link to this publication:
author
Larsson, George LU
supervisor
organization
course
KEMR30 20242
year
type
H2 - Master's Degree (Two Years)
subject
keywords
Metal-Organic Cage, MOC, Metal-Organic Framework, MOF, Ruthenium(II), N-donor ligands, Supramolecular Chemistry, Octahedral Complex, Organic chemistry
language
English
id
9184407
date added to LUP
2025-02-12 13:54:37
date last changed
2025-02-12 13:54:37
@misc{9184407,
  abstract     = {{Metal-Organic Frameworks (MOF) are a group of polymeric porous self-assembly structures consisting of a combination of coordinated metal ions and organic-linker molecules resulting in supramolecules with one-, two- or three-dimensional structures. The porosity of the macromolecule allows smaller molecules to enter and remain coordinated via intermolecular interactions, therefore the potential use as molecule containers, catalysts, and enzyme mimics has always been a huge topic of discussion over the decades. The smallest unit of a MOF is referred to as a metal-organic cage (MOC) and its attention is on the rise due to being superior in all the tasks mentioned due to its increased pore accessibility. Several structures of homoleptic (all organic linkers are the same) MOCs have been synthesized within these few decades but the interest of heteroleptic (variety of linkers) MOCs is on the rise due to their further versatile usage in comparisons to homoleptic structures. However, a problem is the fact that heteroleptic MOCs are structures that require difficult synthesis strategies in order to achieve the wanted product, hence demand complicated calculations and extensive understanding of the properties of the materials. 
In this work we propose and test a brand-new strategy to synthesize heteroleptic three-dimensional cubic MOCs, which will significantly aid future projects to synthesize cubic MOCs. The approach is robust and controlled ultimately allowing solely one type of structure to form, by using octahedral ruthenium(II) acting as corners of the cube and three different organic-linker ligands to connect the metal centers. Over the span of a year this work was divided into two parts where: 1) Metal-anchor complexes and organic-linker ligands synthesis including characterization, 2) Self-assembly complexation of the metal and ligands. The first part consisted of synthesizing and characterizing four different organic-linker ligands and their intermediates, in addition to the synthetic route of the ruthenium metal centers. The second part was the self-assembly complexation of the ruthenium complexes. 
Unfortunately, this work was not able to reach the final structure within time hence the furthest step achieved was potentially the first complexation step of the MOC out of three. The uncertainty of the result stems from the fact that characteristics of complexation are exhibited via NMR spectroscopy, yet due to requiring additional time to assemble it was not possible to extract the product and fully confirm its existence. For future studies, we suggest investigating more effective methods to self-assemble the complex or reviewing the metal-anchors to contain more labile ligands allowing quicker assembly to take place.}},
  author       = {{Larsson, George}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{Novel strategy to synthesize homonuclear cubic heteroleptic metal-organic cages using Ruthenium(II) complexes and N-donor ligands : Synthesis, Characterization, Complexation, and Attempts}},
  year         = {{2025}},
}