Skip to main content

LUP Student Papers

LUND UNIVERSITY LIBRARIES

The Start of a Plastic Breakdown Journey : Investigating Enzymes for Plastic Breakdown

Golovtchenko, Erik LU (2025) KEMR30 20242
Department of Chemistry
Abstract
As plastic pollution in aquatic environments persists, gaining a deeper understanding of nanoparticles has become increasingly important. Yet, the question remains: what happens to plastic as it breaks down into smaller components, and ultimately, what end products are formed? Current plastic degradation methods are limited in their environmental applicability and efficiency.
This study aims to present preliminary work on developing a safe method for breaking down plastic into non-toxic end products. The degradation process is intended to function effectively in natural aquatic environments (specifically freshwater), using only components that are both safe and environmentally reliable. The proposed degradation strategy involves three... (More)
As plastic pollution in aquatic environments persists, gaining a deeper understanding of nanoparticles has become increasingly important. Yet, the question remains: what happens to plastic as it breaks down into smaller components, and ultimately, what end products are formed? Current plastic degradation methods are limited in their environmental applicability and efficiency.
This study aims to present preliminary work on developing a safe method for breaking down plastic into non-toxic end products. The degradation process is intended to function effectively in natural aquatic environments (specifically freshwater), using only components that are both safe and environmentally reliable. The proposed degradation strategy involves three main components: enzymatic degradation, metal-catalysed degradation, and photodegradation (via ultraviolet light).
The study places particular emphasis on the enzymatic degradation of plastic using a cutinase precursor enzyme, Cutin Hydrolase 1, derived from the organism Fusarium vanettenii. Protocols for expression and purification of the enzyme were developed and optimized for use in freshwater environments. The enzyme was subjected to structural analyses and activity assays to evaluate the impact of polystyrene (PS) nanoparticles on its performance. Various PS particles were tested, differing in surface modifications, surface charges, concentrations, and particle sizes.
Structural and kinetic studies were conducted using both commercially available model nanoparticles and in-house-produced degradation particles to simulate those that may arise from plastic breakdown under natural conditions. Structural analysis, performed via circular dichroism spectroscopy, indicated no severe structural alterations in the enzyme upon exposure to different PS nanoparticles. However, observable structural changes were detected when comparing enzyme samples with and without nanoparticles present.
Kinetic assays revealed a decrease in enzymatic activity in the presence of nanoparticles. Interestingly, certain ratios of nanoparticles to enzyme (when all available particle surface could be covered by enzymes, 1:1 ratio) appeared to enhance enzymatic activity, suggesting a complex interaction dependent on particle concentration, with the protein amount being constant.
Additionally, the study offers preliminary protocol recommendations for metal-catalysed degradation using the iron oxide form α-hematite. Methods for dispersing α-hematite particles in freshwater and Milli-Q water are discussed, with particle size distributions characterized through nanoparticle tracking analysis and differential centrifugal sedimentation. Furthermore, the study provides suggestions for separating PS nanoparticles from α-hematite particles when investigating plastic degradation via metal-catalysed pathways, by using sucrose gradients. The findings of the study contribute to the development of environmentally viable strategies for enzymatic plastic degradation in freshwater environments. (Less)
Popular Abstract (Swedish)
Plast är ett av våra vanligaste material i vardagen. Som helhet är det ett billigt, slitstarkt och lätt material. Det finns olika typer av plast med olika egenskaper. Gemensamt för alla plaster är dock att de består av (oftast en typ av) molekyler som sitter ihop i långa, repeterande kedjor. Dessa kedjor kallas polymerer.
När plast slängs i naturen eller hanteras fel som avfall finns det en risk att den bryts ner mekaniskt och av solljus till mindre delar. Mikroplaster är plastpartiklar med storlekar i mikrometerskalan. Går man ett steg längre ner i storlek finner vi ännu mindre plastpartiklar i nanometerskalan, dessa kallas nanoplaster. Mikro- och särskilt nanoplaster kan spridas via luft, vattendrag och näringskedjor hos olika... (More)
Plast är ett av våra vanligaste material i vardagen. Som helhet är det ett billigt, slitstarkt och lätt material. Det finns olika typer av plast med olika egenskaper. Gemensamt för alla plaster är dock att de består av (oftast en typ av) molekyler som sitter ihop i långa, repeterande kedjor. Dessa kedjor kallas polymerer.
När plast slängs i naturen eller hanteras fel som avfall finns det en risk att den bryts ner mekaniskt och av solljus till mindre delar. Mikroplaster är plastpartiklar med storlekar i mikrometerskalan. Går man ett steg längre ner i storlek finner vi ännu mindre plastpartiklar i nanometerskalan, dessa kallas nanoplaster. Mikro- och särskilt nanoplaster kan spridas via luft, vattendrag och näringskedjor hos olika organismer, inklusive oss människor.
Denna studie syftar till att undersöka ett sätt att bryta ner plast med hjälp av enzymer. Ett enzym är ett slags protein som påskyndar kemiska reaktioner. Man kan jämföra dem med en katalysator, ett ämne som inte självt förbrukas i reaktionen, men som får reaktionen att gå snabbare. I studien undersöks huvudsakligen ett kutinas-liknande enzym som naturligt förekommer i svamp. Tidigare forskning har använt enzymer för att klyva vissa plaster där polymererna är sammanlänkade med esterbindningar. För att göra nedbrytningen mer generell, och för att kunna bryta ner även plaster där polymererna binds samman med till exempel kol-kol-bindningar, utreds även metoder som kombinerar solljus och järnoxidpartiklar som komplement till den enzymatiska nedbrytningen.
Enzymet i studien har uttryckts (producerats med hjälp av bakterier) och ett uppreningsprotokoll har utvecklats. Alla enzymer fungerar inte i till exempel färskvatten och vid vanliga utomhustemperaturer. Därför medför detta svårigheter med att rena enzymet på ett sätt som bevarar dess struktur och aktivitet. Enzymers förmåga att katalysera reaktioner mäts med så kallade aktivitetsstudier. I studien genomfördes även olika analyser för att undersöka enzymets struktur och aktivitet, samt om nanoplaster som binder till enzymets yta påverkar dess funktion.
Slutsatsen i studien är att enzymet kunde uttryckas, renas och i hög grad behöll både struktur och aktivitet när det utsattes för olika mängdförhållanden, partikelstorlekar och ytmodifieringar av nanoplaster. Studien föreslår även vidare experiment för att undersöka enzymets förmåga att bryta ner faktisk plast. (Less)
Please use this url to cite or link to this publication:
author
Golovtchenko, Erik LU
supervisor
organization
course
KEMR30 20242
year
type
H2 - Master's Degree (Two Years)
subject
keywords
Biochemistry, Nanoscience, Nanoparticles, Plastic Degradation, Protein Science, Cutinase
language
English
id
9216224
date added to LUP
2025-12-19 09:29:27
date last changed
2025-12-19 09:29:27
@misc{9216224,
  abstract     = {{As plastic pollution in aquatic environments persists, gaining a deeper understanding of nanoparticles has become increasingly important. Yet, the question remains: what happens to plastic as it breaks down into smaller components, and ultimately, what end products are formed? Current plastic degradation methods are limited in their environmental applicability and efficiency.
This study aims to present preliminary work on developing a safe method for breaking down plastic into non-toxic end products. The degradation process is intended to function effectively in natural aquatic environments (specifically freshwater), using only components that are both safe and environmentally reliable. The proposed degradation strategy involves three main components: enzymatic degradation, metal-catalysed degradation, and photodegradation (via ultraviolet light).
The study places particular emphasis on the enzymatic degradation of plastic using a cutinase precursor enzyme, Cutin Hydrolase 1, derived from the organism Fusarium vanettenii. Protocols for expression and purification of the enzyme were developed and optimized for use in freshwater environments. The enzyme was subjected to structural analyses and activity assays to evaluate the impact of polystyrene (PS) nanoparticles on its performance. Various PS particles were tested, differing in surface modifications, surface charges, concentrations, and particle sizes.
Structural and kinetic studies were conducted using both commercially available model nanoparticles and in-house-produced degradation particles to simulate those that may arise from plastic breakdown under natural conditions. Structural analysis, performed via circular dichroism spectroscopy, indicated no severe structural alterations in the enzyme upon exposure to different PS nanoparticles. However, observable structural changes were detected when comparing enzyme samples with and without nanoparticles present.
Kinetic assays revealed a decrease in enzymatic activity in the presence of nanoparticles. Interestingly, certain ratios of nanoparticles to enzyme (when all available particle surface could be covered by enzymes, 1:1 ratio) appeared to enhance enzymatic activity, suggesting a complex interaction dependent on particle concentration, with the protein amount being constant.
Additionally, the study offers preliminary protocol recommendations for metal-catalysed degradation using the iron oxide form α-hematite. Methods for dispersing α-hematite particles in freshwater and Milli-Q water are discussed, with particle size distributions characterized through nanoparticle tracking analysis and differential centrifugal sedimentation. Furthermore, the study provides suggestions for separating PS nanoparticles from α-hematite particles when investigating plastic degradation via metal-catalysed pathways, by using sucrose gradients. The findings of the study contribute to the development of environmentally viable strategies for enzymatic plastic degradation in freshwater environments.}},
  author       = {{Golovtchenko, Erik}},
  language     = {{eng}},
  note         = {{Student Paper}},
  title        = {{The Start of a Plastic Breakdown Journey : Investigating Enzymes for Plastic Breakdown}},
  year         = {{2025}},
}