Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Oxygen consumption and lactate production of the rat portal vein in relation to its contractile activity

Hellstrand, Per LU (1977) In Acta Physiologica Scandinavica 100(1). p.91-106
Abstract
Energy turnover in the isolated rat portal vein was investigated by measurement of oxygen consumption (JO2) and lactate production (JLA) under simultaneous recording of mechanical activity. In spontaneous activity under aerobic conditions and at optimal muscle length JO2 and JLA were 0.55 and 0.62 micromol/min X g, respectively, corresponding to an ATP-production of 4.3 micromol/min X G. When muscle length was changed, an approximately linear relation was found between energy turnover and mean isometric tension. The tension-indpendent part of ATP-production was 3.0 micromol/min X g. In Ca2+-free solution the metabolic rate was 20% lower still. JO2 was nearly equal in isometric contractions and in afterloaded isotonic contractions from the... (More)
Energy turnover in the isolated rat portal vein was investigated by measurement of oxygen consumption (JO2) and lactate production (JLA) under simultaneous recording of mechanical activity. In spontaneous activity under aerobic conditions and at optimal muscle length JO2 and JLA were 0.55 and 0.62 micromol/min X g, respectively, corresponding to an ATP-production of 4.3 micromol/min X G. When muscle length was changed, an approximately linear relation was found between energy turnover and mean isometric tension. The tension-indpendent part of ATP-production was 3.0 micromol/min X g. In Ca2+-free solution the metabolic rate was 20% lower still. JO2 was nearly equal in isometric contractions and in afterloaded isotonic contractions from the same initial muscle length. During a maximal tonic contracture in 5+-depolarized portal vein JO2 increased to about twice that in spontaneous activity. Changes in contracture force by variations in muscle length or in [Ca2+]0 were associated with identical linear relations between JO2 and active tension. This relation was less steep than the corresponding relation for spontaneous activity. The anaerobic lactate production of the portal vein was 2.7 times theaerobic leve. The accelerated glycolysis did not compensate for eliminated oxidative metabolism. Under substrate-free aerobic conditions no lactate was produced by the muscle and compared to the control situation JO2 declined more than could be accounted for by reduced mechanical activity alone. The metabolic turnover rate in relation to isometric tension is high in the rat portal vein compared to that of tonic vascular smooth muscle from larger vessels. This correlates with differences in dyanmic mechanical properties. At comaparable tension levels in the portal vein, the rate of cross-bridge turnover may be higher in spontaneous phasic activity than in sustained contracture. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Acta Physiologica Scandinavica
volume
100
issue
1
pages
91 - 106
publisher
Wiley-Blackwell
external identifiers
  • pmid:899832
  • scopus:0017379935
ISSN
0001-6772
language
English
LU publication?
yes
id
a6afa61d-e48e-4f0a-88d5-1cb9f0b76ea3 (old id 1102640)
date added to LUP
2016-04-01 16:34:51
date last changed
2021-01-03 09:30:30
@article{a6afa61d-e48e-4f0a-88d5-1cb9f0b76ea3,
  abstract     = {{Energy turnover in the isolated rat portal vein was investigated by measurement of oxygen consumption (JO2) and lactate production (JLA) under simultaneous recording of mechanical activity. In spontaneous activity under aerobic conditions and at optimal muscle length JO2 and JLA were 0.55 and 0.62 micromol/min X g, respectively, corresponding to an ATP-production of 4.3 micromol/min X G. When muscle length was changed, an approximately linear relation was found between energy turnover and mean isometric tension. The tension-indpendent part of ATP-production was 3.0 micromol/min X g. In Ca2+-free solution the metabolic rate was 20% lower still. JO2 was nearly equal in isometric contractions and in afterloaded isotonic contractions from the same initial muscle length. During a maximal tonic contracture in 5+-depolarized portal vein JO2 increased to about twice that in spontaneous activity. Changes in contracture force by variations in muscle length or in [Ca2+]0 were associated with identical linear relations between JO2 and active tension. This relation was less steep than the corresponding relation for spontaneous activity. The anaerobic lactate production of the portal vein was 2.7 times theaerobic leve. The accelerated glycolysis did not compensate for eliminated oxidative metabolism. Under substrate-free aerobic conditions no lactate was produced by the muscle and compared to the control situation JO2 declined more than could be accounted for by reduced mechanical activity alone. The metabolic turnover rate in relation to isometric tension is high in the rat portal vein compared to that of tonic vascular smooth muscle from larger vessels. This correlates with differences in dyanmic mechanical properties. At comaparable tension levels in the portal vein, the rate of cross-bridge turnover may be higher in spontaneous phasic activity than in sustained contracture.}},
  author       = {{Hellstrand, Per}},
  issn         = {{0001-6772}},
  language     = {{eng}},
  number       = {{1}},
  pages        = {{91--106}},
  publisher    = {{Wiley-Blackwell}},
  series       = {{Acta Physiologica Scandinavica}},
  title        = {{Oxygen consumption and lactate production of the rat portal vein in relation to its contractile activity}},
  volume       = {{100}},
  year         = {{1977}},
}