Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Long-term exposure to IL-1beta enhances Toll-IL-1 receptor-mediated inflammatory signaling in murine airway hyperresponsiveness.

Zhang, Yaping LU ; Xu, Cang-Bao LU and Cardell, Lars-Olaf LU (2009) In European Cytokine Network 20(3). p.148-156
Abstract
Toll-interleukin-1 (Toll-IL-1) receptor signaling may play a key role in the development of airway hyperreactivity (AHR) and chronic airway inflammatory diseases such as asthma. Previously, we have demonstrated that pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta), induce AHR. However, the underlying intracellular signaling mechanisms that lead to AHR remain elusive. In order to see if the Toll-IL-1 receptor-mediated inflammatory signal pathways are involved in the development of AHR, the present study was designed to use a real-time PCR array, a sensitive and powerful tool, consisting of 84 genes related to Toll-IL-1 receptor signal pathways. Murine tracheal segments were organ cultured... (More)
Toll-interleukin-1 (Toll-IL-1) receptor signaling may play a key role in the development of airway hyperreactivity (AHR) and chronic airway inflammatory diseases such as asthma. Previously, we have demonstrated that pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta), induce AHR. However, the underlying intracellular signaling mechanisms that lead to AHR remain elusive. In order to see if the Toll-IL-1 receptor-mediated inflammatory signal pathways are involved in the development of AHR, the present study was designed to use a real-time PCR array, a sensitive and powerful tool, consisting of 84 genes related to Toll-IL-1 receptor signal pathways. Murine tracheal segments were organ cultured for four days in the presence and absence of IL-1beta. The Toll-IL-1 receptor-mediated inflammatory signal gene profile was studied using the real-time PCR-based cDNA array. The key gene expressions that were altered were verified by immunohistochemistry using confocal microscopy. Tracheal ring segment contractile responsiveness to the inflammatory mediator bradykinin was monitored using a sensitive myograph system. The results showed that after exposed to IL-1beta for four days, the tracheal segments exhibited increased mRNA expression of 67 genes (out of the 84 genes in the array), although expression reached statistical significance for only 16 of these genes. There were 14 genes that showed only a tendency towards a decrease in mRNA expression following IL-1beta treatment. Immunohistochemistry confirmed that protein expression for CD14, RP105, MCP-1 and phosphorylated IkappaB-alpha were increased in both the airway epithelial and smooth muscle cells. In order to link the activation of Toll-IL-1 receptor-mediated inflammatory signal mechanisms to the AHR, the anti-inflammatory drug dexamethasone, was used. Dexamethasone not only completely abolished the IL-1beta-induced AHR to bradykinin, but also abrogated the increased mRNA expression for inflammatory mediators, IL-6, IFN-gamma and Cox-2. In conclusion, long-term exposure of murine airway to IL-1beta induces up- and down-regulation of mRNA expression for Toll-IL-1 receptor signal molecules, with a significant increase in the expression of 16 genes that contribute to the development of airway inflammation and AHR. Understanding cytokine-induced activation of the Toll-IL-1 receptor-mediated inflammatory signaling mechanisms may provide new options for the treatment of airway inflammation and AHR. (Less)
Please use this url to cite or link to this publication:
author
; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
European Cytokine Network
volume
20
issue
3
pages
148 - 156
publisher
John Libbey Eurotext
external identifiers
  • wos:000271174900009
  • pmid:19825525
  • scopus:70849118886
ISSN
1952-4005
DOI
10.1684/ecn.2009.0156
language
English
LU publication?
yes
id
adf9183e-89b6-4380-b22f-4761d95f4234 (old id 1500382)
alternative location
http://www.ncbi.nlm.nih.gov/pubmed/19825525?dopt=Abstract
date added to LUP
2016-04-04 08:49:52
date last changed
2024-01-12 06:29:51
@article{adf9183e-89b6-4380-b22f-4761d95f4234,
  abstract     = {{Toll-interleukin-1 (Toll-IL-1) receptor signaling may play a key role in the development of airway hyperreactivity (AHR) and chronic airway inflammatory diseases such as asthma. Previously, we have demonstrated that pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta), induce AHR. However, the underlying intracellular signaling mechanisms that lead to AHR remain elusive. In order to see if the Toll-IL-1 receptor-mediated inflammatory signal pathways are involved in the development of AHR, the present study was designed to use a real-time PCR array, a sensitive and powerful tool, consisting of 84 genes related to Toll-IL-1 receptor signal pathways. Murine tracheal segments were organ cultured for four days in the presence and absence of IL-1beta. The Toll-IL-1 receptor-mediated inflammatory signal gene profile was studied using the real-time PCR-based cDNA array. The key gene expressions that were altered were verified by immunohistochemistry using confocal microscopy. Tracheal ring segment contractile responsiveness to the inflammatory mediator bradykinin was monitored using a sensitive myograph system. The results showed that after exposed to IL-1beta for four days, the tracheal segments exhibited increased mRNA expression of 67 genes (out of the 84 genes in the array), although expression reached statistical significance for only 16 of these genes. There were 14 genes that showed only a tendency towards a decrease in mRNA expression following IL-1beta treatment. Immunohistochemistry confirmed that protein expression for CD14, RP105, MCP-1 and phosphorylated IkappaB-alpha were increased in both the airway epithelial and smooth muscle cells. In order to link the activation of Toll-IL-1 receptor-mediated inflammatory signal mechanisms to the AHR, the anti-inflammatory drug dexamethasone, was used. Dexamethasone not only completely abolished the IL-1beta-induced AHR to bradykinin, but also abrogated the increased mRNA expression for inflammatory mediators, IL-6, IFN-gamma and Cox-2. In conclusion, long-term exposure of murine airway to IL-1beta induces up- and down-regulation of mRNA expression for Toll-IL-1 receptor signal molecules, with a significant increase in the expression of 16 genes that contribute to the development of airway inflammation and AHR. Understanding cytokine-induced activation of the Toll-IL-1 receptor-mediated inflammatory signaling mechanisms may provide new options for the treatment of airway inflammation and AHR.}},
  author       = {{Zhang, Yaping and Xu, Cang-Bao and Cardell, Lars-Olaf}},
  issn         = {{1952-4005}},
  language     = {{eng}},
  number       = {{3}},
  pages        = {{148--156}},
  publisher    = {{John Libbey Eurotext}},
  series       = {{European Cytokine Network}},
  title        = {{Long-term exposure to IL-1beta enhances Toll-IL-1 receptor-mediated inflammatory signaling in murine airway hyperresponsiveness.}},
  url          = {{http://dx.doi.org/10.1684/ecn.2009.0156}},
  doi          = {{10.1684/ecn.2009.0156}},
  volume       = {{20}},
  year         = {{2009}},
}