Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Cluster-Driven Dynamical Arrest in Concentrated Lysozyme Solutions

Cardinaux, Frederic ; Zaccarelli, Emanuela ; Stradner, Anna ; Bucciarelli, Saskia ; Farago, Bela ; Egelhaaf, Stefan U. ; Sciortino, Francesco and Schurtenberger, Peter LU orcid (2011) In The Journal of Physical Chemistry Part B 115(22). p.7227-7237
Abstract
We present a detailed experimental and numerical study of the structural and dynamical properties of salt-free lysozyme solutions. In particular, by combining small-angle X-ray scattering (SAXS) data with neutron spin echo (NSE) and rheology experiments, we are able to identify that an arrest transition takes place at intermediate densities, driven by the slowing down of the cluster motion. Using an effective pair potential among proteins, based on the combination of short-range attraction and long-range repulsion, we account remarkably well for the peculiar volume fraction dependence of the effective structure factor measured by SAXS. We show that a transition from a monomer to a cluster-dominated fluid happens at volume fractions larger... (More)
We present a detailed experimental and numerical study of the structural and dynamical properties of salt-free lysozyme solutions. In particular, by combining small-angle X-ray scattering (SAXS) data with neutron spin echo (NSE) and rheology experiments, we are able to identify that an arrest transition takes place at intermediate densities, driven by the slowing down of the cluster motion. Using an effective pair potential among proteins, based on the combination of short-range attraction and long-range repulsion, we account remarkably well for the peculiar volume fraction dependence of the effective structure factor measured by SAXS. We show that a transition from a monomer to a cluster-dominated fluid happens at volume fractions larger than phi greater than or similar to 0.05 where the close agreement between NSE measurements and Brownian dynamics simulations confirms the transient nature of the clusters. Clusters even stay transient above the geometric percolation found in simulation at phi > 0.15, though NSE reveals a cluster lifetime that becomes increasingly large and indicates a divergence of the diffusivity at phi greater than or similar to 0.26. Macroscopic measurements of the viscosity confirm this transition where the long-lived-nature of the clusters is at the origin of the simultaneous dynamical arrest at all length scales. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
The Journal of Physical Chemistry Part B
volume
115
issue
22
pages
7227 - 7237
publisher
The American Chemical Society (ACS)
external identifiers
  • wos:000291080000008
  • scopus:79958231043
  • pmid:21528887
ISSN
1520-5207
DOI
10.1021/jp112180p
language
English
LU publication?
yes
id
a031e764-cb69-4308-b569-f5bf81e79afa (old id 1985889)
date added to LUP
2016-04-01 14:02:50
date last changed
2022-02-19 08:52:37
@article{a031e764-cb69-4308-b569-f5bf81e79afa,
  abstract     = {{We present a detailed experimental and numerical study of the structural and dynamical properties of salt-free lysozyme solutions. In particular, by combining small-angle X-ray scattering (SAXS) data with neutron spin echo (NSE) and rheology experiments, we are able to identify that an arrest transition takes place at intermediate densities, driven by the slowing down of the cluster motion. Using an effective pair potential among proteins, based on the combination of short-range attraction and long-range repulsion, we account remarkably well for the peculiar volume fraction dependence of the effective structure factor measured by SAXS. We show that a transition from a monomer to a cluster-dominated fluid happens at volume fractions larger than phi greater than or similar to 0.05 where the close agreement between NSE measurements and Brownian dynamics simulations confirms the transient nature of the clusters. Clusters even stay transient above the geometric percolation found in simulation at phi > 0.15, though NSE reveals a cluster lifetime that becomes increasingly large and indicates a divergence of the diffusivity at phi greater than or similar to 0.26. Macroscopic measurements of the viscosity confirm this transition where the long-lived-nature of the clusters is at the origin of the simultaneous dynamical arrest at all length scales.}},
  author       = {{Cardinaux, Frederic and Zaccarelli, Emanuela and Stradner, Anna and Bucciarelli, Saskia and Farago, Bela and Egelhaaf, Stefan U. and Sciortino, Francesco and Schurtenberger, Peter}},
  issn         = {{1520-5207}},
  language     = {{eng}},
  number       = {{22}},
  pages        = {{7227--7237}},
  publisher    = {{The American Chemical Society (ACS)}},
  series       = {{The Journal of Physical Chemistry Part B}},
  title        = {{Cluster-Driven Dynamical Arrest in Concentrated Lysozyme Solutions}},
  url          = {{http://dx.doi.org/10.1021/jp112180p}},
  doi          = {{10.1021/jp112180p}},
  volume       = {{115}},
  year         = {{2011}},
}