Proteomic profiling reveals alterations in metabolic and cellular pathways in severe obesity and following metabolic bariatric surgery
(2025) In American Journal of Physiology - Endocrinology and Metabolism 328(3). p.311-324- Abstract
In this study, we investigated the impact of bariatric surgery on the adipose proteome to better understand the metabolic and cellular mechanisms underlying weight loss following the procedure. A total of 46 patients with severe obesity were included, with samples collected both before and after bariatric surgery. In addition, 15 healthy individuals without obesity who did not undergo surgery served as controls and were studied once. We utilized quantitative liquid chromatography-tandem mass spectrometry analysis to conduct a large-scale proteomic study on abdominal subcutaneous biopsies obtained from the study participants. Our proteomic profiling revealed that among the 2,254 compared proteins, 46 were upregulated and 34 were... (More)
In this study, we investigated the impact of bariatric surgery on the adipose proteome to better understand the metabolic and cellular mechanisms underlying weight loss following the procedure. A total of 46 patients with severe obesity were included, with samples collected both before and after bariatric surgery. In addition, 15 healthy individuals without obesity who did not undergo surgery served as controls and were studied once. We utilized quantitative liquid chromatography-tandem mass spectrometry analysis to conduct a large-scale proteomic study on abdominal subcutaneous biopsies obtained from the study participants. Our proteomic profiling revealed that among the 2,254 compared proteins, 46 were upregulated and 34 were downregulated 6 months post surgery compared with baseline [false discovery rate (FDR) < 0.01]. We observed a downregulation of proteins associated with mitochondrial integrity, amino acid catabolism, and lipid metabolism in the patients with severe obesity compared with the controls. Bariatric surgery was associated with an upregulation in pathways related to mitochondrial function, protein synthesis, folding and trafficking, actin cytoskeleton regulation, and DNA binding and repair. These findings emphasize the significant changes in metabolic and cellular pathways following bariatric surgery, highlighting the potential mechanisms underlying the observed health improvements postbariatric surgery. The data provided alongside this paper will serve as a valuable resource for the development of targeted therapeutic strategies for obesity and related metabolic complications.
(Less)
- author
- organization
- publishing date
- 2025-03
- type
- Contribution to journal
- publication status
- published
- subject
- keywords
- adipose tissue, metabolic and cellular pathways, metabolic bariatric surgery, proteomics, severe obesity
- in
- American Journal of Physiology - Endocrinology and Metabolism
- volume
- 328
- issue
- 3
- pages
- 311 - 324
- publisher
- American Physiological Society
- external identifiers
-
- pmid:39819027
- scopus:85218458979
- ISSN
- 0193-1849
- DOI
- 10.1152/ajpendo.00220.2024
- language
- English
- LU publication?
- yes
- id
- 2004718e-9dd5-44ab-8111-1ede158d9e51
- date added to LUP
- 2025-06-24 11:08:34
- date last changed
- 2025-06-24 11:09:47
@article{2004718e-9dd5-44ab-8111-1ede158d9e51, abstract = {{<p>In this study, we investigated the impact of bariatric surgery on the adipose proteome to better understand the metabolic and cellular mechanisms underlying weight loss following the procedure. A total of 46 patients with severe obesity were included, with samples collected both before and after bariatric surgery. In addition, 15 healthy individuals without obesity who did not undergo surgery served as controls and were studied once. We utilized quantitative liquid chromatography-tandem mass spectrometry analysis to conduct a large-scale proteomic study on abdominal subcutaneous biopsies obtained from the study participants. Our proteomic profiling revealed that among the 2,254 compared proteins, 46 were upregulated and 34 were downregulated 6 months post surgery compared with baseline [false discovery rate (FDR) < 0.01]. We observed a downregulation of proteins associated with mitochondrial integrity, amino acid catabolism, and lipid metabolism in the patients with severe obesity compared with the controls. Bariatric surgery was associated with an upregulation in pathways related to mitochondrial function, protein synthesis, folding and trafficking, actin cytoskeleton regulation, and DNA binding and repair. These findings emphasize the significant changes in metabolic and cellular pathways following bariatric surgery, highlighting the potential mechanisms underlying the observed health improvements postbariatric surgery. The data provided alongside this paper will serve as a valuable resource for the development of targeted therapeutic strategies for obesity and related metabolic complications.</p>}}, author = {{Dadson, Prince and Honka, Miikka Juhani and Suomi, Tomi and Haridas, P. A.Nidhina and Rokka, Anne and Palani, Senthil and Goltseva, Elena and Wang, Ning and Roivainen, Anne and Salminen, Paulina and James, Peter and Olkkonen, Vesa M. and Elo, Laura L. and Nuutila, Pirjo}}, issn = {{0193-1849}}, keywords = {{adipose tissue; metabolic and cellular pathways; metabolic bariatric surgery; proteomics; severe obesity}}, language = {{eng}}, number = {{3}}, pages = {{311--324}}, publisher = {{American Physiological Society}}, series = {{American Journal of Physiology - Endocrinology and Metabolism}}, title = {{Proteomic profiling reveals alterations in metabolic and cellular pathways in severe obesity and following metabolic bariatric surgery}}, url = {{http://dx.doi.org/10.1152/ajpendo.00220.2024}}, doi = {{10.1152/ajpendo.00220.2024}}, volume = {{328}}, year = {{2025}}, }