Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

The potential transient dynamics of forests in New England under historical and projected future climate change

Tang, Guoping ; Beckage, Brian and Smith, Benjamin LU (2012) In Climatic Change 114(2). p.357-377
Abstract
Projections of vegetation distribution that incorporate the transient responses of vegetation to climate change are likely to be more efficacious than those that assume an equilibrium between climate and vegetation. We examine the non-equilibrium dynamics of a temperate forest region under historic and projected future climate change using the dynamic ecosystem model LPJ-GUESS. We parameterized LPJ-GUESS for the New England region of the United Sates utilizing eight forest cover types that comprise the regionally dominant species. We developed a set of climate data at a monthly-step and a 30-arc second spatial resolution to run the model. These datasets consist of past climate observations for the period 1901-2006 and three general... (More)
Projections of vegetation distribution that incorporate the transient responses of vegetation to climate change are likely to be more efficacious than those that assume an equilibrium between climate and vegetation. We examine the non-equilibrium dynamics of a temperate forest region under historic and projected future climate change using the dynamic ecosystem model LPJ-GUESS. We parameterized LPJ-GUESS for the New England region of the United Sates utilizing eight forest cover types that comprise the regionally dominant species. We developed a set of climate data at a monthly-step and a 30-arc second spatial resolution to run the model. These datasets consist of past climate observations for the period 1901-2006 and three general circulation model projections for the period 2007-2099. Our baseline (1971-2000) simulation reproduces the distribution of forest types in our study region as compared to the National Land Cover Data 2001 (Kappa statistic = 0.54). Under historic and nine future climate change scenarios, maple-beech-basswood, oaks and aspen-birch were modeled to move upslope at an estimated rate of 0.2, 0.3 and 0.5 m yr(-1) from 1901 to 2006, and continued this trend at an accelerated rate of around 0.5, 0.9 and 1.7 m yr(-1) from 2007 to 2099. Spruce-fir and white pine-cedar were modeled to contract to mountain ranges and cooler regions of our study region under projected future climate change scenarios. By the end of the 21(st) century, 60% of New England is projected to be dominated by oaks relative to 21% at the beginning of the 21(st) century, while northern New England is modeled to be dominated by aspen-birch. In mid and central New England, maple-beech-basswood, yellow birch-elm and hickories co-occur and form novel species associations. In addition to warming-induced northward and upslope shifts, climate change causes more complex changes in our simulations, such as reversed conversions between forest types that currently share similar bioclimatic ranges. These results underline the importance of considering community interactions and transient dynamics in modeling studies of climate change impacts on forest ecosystems. (Less)
Please use this url to cite or link to this publication:
author
; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Climatic Change
volume
114
issue
2
pages
357 - 377
publisher
Springer
external identifiers
  • wos:000307256200012
  • scopus:84865416263
ISSN
0165-0009
DOI
10.1007/s10584-012-0404-x
language
English
LU publication?
yes
id
49b00716-e43b-4489-b24d-3b168ba2ed56 (old id 3070058)
date added to LUP
2016-04-01 10:11:29
date last changed
2022-01-25 20:42:38
@article{49b00716-e43b-4489-b24d-3b168ba2ed56,
  abstract     = {{Projections of vegetation distribution that incorporate the transient responses of vegetation to climate change are likely to be more efficacious than those that assume an equilibrium between climate and vegetation. We examine the non-equilibrium dynamics of a temperate forest region under historic and projected future climate change using the dynamic ecosystem model LPJ-GUESS. We parameterized LPJ-GUESS for the New England region of the United Sates utilizing eight forest cover types that comprise the regionally dominant species. We developed a set of climate data at a monthly-step and a 30-arc second spatial resolution to run the model. These datasets consist of past climate observations for the period 1901-2006 and three general circulation model projections for the period 2007-2099. Our baseline (1971-2000) simulation reproduces the distribution of forest types in our study region as compared to the National Land Cover Data 2001 (Kappa statistic = 0.54). Under historic and nine future climate change scenarios, maple-beech-basswood, oaks and aspen-birch were modeled to move upslope at an estimated rate of 0.2, 0.3 and 0.5 m yr(-1) from 1901 to 2006, and continued this trend at an accelerated rate of around 0.5, 0.9 and 1.7 m yr(-1) from 2007 to 2099. Spruce-fir and white pine-cedar were modeled to contract to mountain ranges and cooler regions of our study region under projected future climate change scenarios. By the end of the 21(st) century, 60% of New England is projected to be dominated by oaks relative to 21% at the beginning of the 21(st) century, while northern New England is modeled to be dominated by aspen-birch. In mid and central New England, maple-beech-basswood, yellow birch-elm and hickories co-occur and form novel species associations. In addition to warming-induced northward and upslope shifts, climate change causes more complex changes in our simulations, such as reversed conversions between forest types that currently share similar bioclimatic ranges. These results underline the importance of considering community interactions and transient dynamics in modeling studies of climate change impacts on forest ecosystems.}},
  author       = {{Tang, Guoping and Beckage, Brian and Smith, Benjamin}},
  issn         = {{0165-0009}},
  language     = {{eng}},
  number       = {{2}},
  pages        = {{357--377}},
  publisher    = {{Springer}},
  series       = {{Climatic Change}},
  title        = {{The potential transient dynamics of forests in New England under historical and projected future climate change}},
  url          = {{http://dx.doi.org/10.1007/s10584-012-0404-x}},
  doi          = {{10.1007/s10584-012-0404-x}},
  volume       = {{114}},
  year         = {{2012}},
}