Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Extended X-ray absorption fine structure spectroscopy evidence for the complexation of cadmium by reduced sulfur groups in natural organic matter

Karlsson, T. ; Persson, Per LU and Skyllberg, U. (2005) In Environmental Science & Technology 39. p.3048-3055
Abstract
It is widely accepted that the bioavaiiability, toxicity, and mobility of trace metals are highly dependent on complexation reactions with functional groups in natural organic matter (NOM). In this study, the coordination chemistry of Cd in NOM was investigated by extended X-ray absorption fine structure spectroscopy. Soil organic matter (SOM) from different types of organic soils and dissolved organic matter (DOM) from an organic and a mineral soil horizon of a Spodosol and aquatic DOM from Suwannee River were investigated. In SOM samples (1000-25000 mu g of Cd g(-1), pH 4.6-6.6), Cd was coordinated by 1.0-2.5 S atoms at a distance of 2.49-2.55 angstrom and by 3.0-4.5 O/N atoms at a distance of 2.22-2.25 angstrom. In DOM samples... (More)
It is widely accepted that the bioavaiiability, toxicity, and mobility of trace metals are highly dependent on complexation reactions with functional groups in natural organic matter (NOM). In this study, the coordination chemistry of Cd in NOM was investigated by extended X-ray absorption fine structure spectroscopy. Soil organic matter (SOM) from different types of organic soils and dissolved organic matter (DOM) from an organic and a mineral soil horizon of a Spodosol and aquatic DOM from Suwannee River were investigated. In SOM samples (1000-25000 mu g of Cd g(-1), pH 4.6-6.6), Cd was coordinated by 1.0-2.5 S atoms at a distance of 2.49-2.55 angstrom and by 3.0-4.5 O/N atoms at a distance of 2.22-2.25 angstrom. In DOM samples (1750-4250 mu g of Cd g(-1), pH 5.4-6.3), Cd was coordinated by 0.3-1.8 S atoms at a distance of 2.51-2.56 angstrom and 3.6-4.5 O/N atoms at a distance of 2.23-2.26 angstrom. In both SOM and DOM samples a second coordination shell of 1.7-6.0 carbon atoms was found at an average distance of 3.12 angstrom. This is direct evidence for inner-sphere complexation of Cd by functional groups in NOM. Furthermore, ion activity measurements showed that less than 1% of total Cd was in the form of free Cd2+ in our samples. Bond distances and coordination numbers suggest that Cd complexed in SOM and DOM is a mixture of a 4-coordination with S (thiols) and 4- and 6-coordinations with O/N ligands. Given that Cd-S associations on average are stronger than Cd-O/N associations, our results strongly indicate that reduced S ligands are involved in the complexation of Cd by NOM also at native concentrations of metal in oxidized organic-rich soils and in humic streams. (Less)
Please use this url to cite or link to this publication:
author
; and
publishing date
type
Contribution to journal
publication status
published
subject
in
Environmental Science & Technology
volume
39
pages
3048 - 3055
publisher
The American Chemical Society (ACS)
external identifiers
  • scopus:18344388872
ISSN
1520-5851
DOI
10.1021/es048585a
language
English
LU publication?
no
additional info
9
id
5f979321-1c05-4b47-895f-610371e6ecc3 (old id 4332503)
date added to LUP
2016-04-01 17:07:57
date last changed
2022-04-07 21:04:20
@article{5f979321-1c05-4b47-895f-610371e6ecc3,
  abstract     = {{It is widely accepted that the bioavaiiability, toxicity, and mobility of trace metals are highly dependent on complexation reactions with functional groups in natural organic matter (NOM). In this study, the coordination chemistry of Cd in NOM was investigated by extended X-ray absorption fine structure spectroscopy. Soil organic matter (SOM) from different types of organic soils and dissolved organic matter (DOM) from an organic and a mineral soil horizon of a Spodosol and aquatic DOM from Suwannee River were investigated. In SOM samples (1000-25000 mu g of Cd g(-1), pH 4.6-6.6), Cd was coordinated by 1.0-2.5 S atoms at a distance of 2.49-2.55 angstrom and by 3.0-4.5 O/N atoms at a distance of 2.22-2.25 angstrom. In DOM samples (1750-4250 mu g of Cd g(-1), pH 5.4-6.3), Cd was coordinated by 0.3-1.8 S atoms at a distance of 2.51-2.56 angstrom and 3.6-4.5 O/N atoms at a distance of 2.23-2.26 angstrom. In both SOM and DOM samples a second coordination shell of 1.7-6.0 carbon atoms was found at an average distance of 3.12 angstrom. This is direct evidence for inner-sphere complexation of Cd by functional groups in NOM. Furthermore, ion activity measurements showed that less than 1% of total Cd was in the form of free Cd2+ in our samples. Bond distances and coordination numbers suggest that Cd complexed in SOM and DOM is a mixture of a 4-coordination with S (thiols) and 4- and 6-coordinations with O/N ligands. Given that Cd-S associations on average are stronger than Cd-O/N associations, our results strongly indicate that reduced S ligands are involved in the complexation of Cd by NOM also at native concentrations of metal in oxidized organic-rich soils and in humic streams.}},
  author       = {{Karlsson, T. and Persson, Per and Skyllberg, U.}},
  issn         = {{1520-5851}},
  language     = {{eng}},
  pages        = {{3048--3055}},
  publisher    = {{The American Chemical Society (ACS)}},
  series       = {{Environmental Science & Technology}},
  title        = {{Extended X-ray absorption fine structure spectroscopy evidence for the complexation of cadmium by reduced sulfur groups in natural organic matter}},
  url          = {{http://dx.doi.org/10.1021/es048585a}},
  doi          = {{10.1021/es048585a}},
  volume       = {{39}},
  year         = {{2005}},
}