Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Magnetotransport Studies of Mn Ion-Implanted Nanowires

Paschoal, Waldomiro LU (2014)
Abstract
This thesis focuses on the magnetotransport properties of highly Mn-doped crystalline GaAs nanowires. The GaAs nanowires were first grown by metal-organic vapor phase epitaxy from gold seed particles, and subsequently implanted with Mn ions under varying conditions, e.g., ion fluence and acceleration voltage. The implantation process was carefully analyzed and optimized within the research project. The resulting Mn-concentration in the nanowires ranges from 0.0001% to 5%. The implantation was carried out at elevated temperatures to facilitate dynamic annealing conditions at which most of the implantation-related defects are removed. After implantation, the nanowires were mechanically removed from the substrate to specially designed... (More)
This thesis focuses on the magnetotransport properties of highly Mn-doped crystalline GaAs nanowires. The GaAs nanowires were first grown by metal-organic vapor phase epitaxy from gold seed particles, and subsequently implanted with Mn ions under varying conditions, e.g., ion fluence and acceleration voltage. The implantation process was carefully analyzed and optimized within the research project. The resulting Mn-concentration in the nanowires ranges from 0.0001% to 5%. The implantation was carried out at elevated temperatures to facilitate dynamic annealing conditions at which most of the implantation-related defects are removed. After implantation, the nanowires were mechanically removed from the substrate to specially designed insulating SiO2/Si substrates optimized for magnetotransport measurements. The single nanowires were supplied with four contacts, defined by electron-beam lithography, for accurate transport measurements. The resistance of GaAs and GaAs: Zn nanowires was meticulously measured and analyzed in the temperature range from 300K to 1.6K, and with magnetic fields ranging from 0T to 8T. The magnetic field was applied both parallel and perpendicular to the nanowires. In addition, the magnetic properties of nanowires were probed using a superconductivity quantum interference device (SQUID) setup. The typical resistance for a highly Mn-doped (5%) nanowire increases from a few MOhm at 300K to several GOhm at 1.6K. More specifically, the temperature-dependence of the resistance shows transport regimes described by different models. The current-voltage characteristics become strongly non-linear as the temperature decreases and shows apparent power-law behavior at low temperatures. The transport data, from 50K to 180K, are interpreted in terms of the variable range hopping (VRH) mechanism and from 180K to 300K in terms of a nearest neighbor hopping (NNH) mechanism; both occur due to the disorder in the nanowires resulting from the implantation of Mn. Below 50K, the magnetotransport data exhibit a large 40% negative magnetoresistance with the magnetic field applied either in parallel or perpendicular to the nanowire. Complementary SQUID measurements under zero-field-cooled and field-cooled conditions, recorded at low magnetic fields, exhibit clear signs of the onset of a spin-glass phase with a spin-freezing temperature of about 16K. The high magnetoresistance is explained in terms of spin-dependent hopping in a complex magnetic nanowire landscape of magnetic polarons, separated by intermediate regions of Mn-impurity spins, forming a paramagnetic/spin-glass phase. Finally, magnetotransport experiments were carried out in a series of in-situ Zn-doped (p-type) GaAs nanowires implanted with different Mn-concentrations. The nanowires with the lowest Mn-concentration exhibit a low resistance of a few kOhms at 300K and a 4% positive magnetoresistance at 1.6K, which is well described by invoking a spin-split sub-band model, unlike nanowires with the highest Mn-concentration which show a high resistance of several MOhms at 300K and a large negative magnetoresistance of 85% at 1.6K. Sweeping the magnetic field back and forth for the samples with highest Mn-concentration reveals a small hysteresis, which signals the presence of a weak ferromagnetic state. Thus, co-doping with Zn appears promising for the goal of realizing ferromagnetic GaMnAs nanowires for future nanospintronics. In summary, this thesis shows that Mn-implanted GaAs nanowires indeed represent an interesting novel type of nanometer-scale building block for miniaturized spintronic devices compatible with mainstream silicon technology. (Less)
Abstract (Swedish)
Popular Abstract in Swedish

Den pågående trenden att alltmer digital information skapas och lagras av ett ständigt ökande antal människor över hela världen driver på den formidabla utveckling vi idag ser av elektroniska apparater som t.ex. läsplattor, bärbara datorer och smartphones. För att möjliggöra en fortsatt utveckling i samma takt, krävs tillgång till nya typer av halvledarkomponenter och kretsar. Spinntronik är ett högaktuellt exempel som under senare år utvecklats till ett mycket intensivt forskningsområde. Det övergripande målet med denna forskning är att skapa nya typer av funktionella komponenter och kretsar som inte bara utnyttjar elektronernas laddning, utan också en annan fundamental egenskap hos elektroner... (More)
Popular Abstract in Swedish

Den pågående trenden att alltmer digital information skapas och lagras av ett ständigt ökande antal människor över hela världen driver på den formidabla utveckling vi idag ser av elektroniska apparater som t.ex. läsplattor, bärbara datorer och smartphones. För att möjliggöra en fortsatt utveckling i samma takt, krävs tillgång till nya typer av halvledarkomponenter och kretsar. Spinntronik är ett högaktuellt exempel som under senare år utvecklats till ett mycket intensivt forskningsområde. Det övergripande målet med denna forskning är att skapa nya typer av funktionella komponenter och kretsar som inte bara utnyttjar elektronernas laddning, utan också en annan fundamental egenskap hos elektroner som kallas spinn. I en enkel bild kan spinnet tänkas som en rotation av elektronen kring sin egen axel. Elektronen kan rotera med- eller moturs, vilket då brukar sägas svara mot spinn upp eller ned. Det finns ett naturligt samband mellan spinn och magnetism. En annan trend i modern elektronikutveckling är den fantastiska nedskalningen av komponenters storlek till en nanoskala.

Denna avhandling berör tillverkning, dopning och karakterisering av elektriska och magnetiska egenskaper hos ett av dom mest intressanta nanomaterialen för just framtidens elektronik - magnetiska nanotrådar. De nanotrådar som studeras är tillverkade av galliumarsenid i en ”bottom-up” process från små guldpartiklar som katalyserat växten av nanotrådarna. För att göra magnetiska halvledare i bulkform eller i tunna skikt, dopar/legerar man typiskt galliumarsenid med grundämnet mangan. Mangan tillför på samma gång både magnetiska moment (spinn) och laddningsbärare som förmedlar en magnetisk koppling mellan spinnen. Tyvärr låter inte denna legeringsprocess sig göras på ett enkelt sätt i nanotrådar eftersom manganatomerna klumpar ihop sig på ett oönskat sätt. För att dopa/legera nanotrådarna med mangan har vi därför utvecklat en ny metod där manganjoner skjuts in i nanotrådarna (så kallad jon-implantering). Efter kristallväxten överförs nanotrådarna mekaniskt till ett elektronmikroskop för struktur- och sammansättningsanalys, alternativt till ett isolerat kiselsubstrat där de förses med avancerade kontakter för elektrisk och magnetisk karakterisering. Nanotrådar av hög kristallin kvalitet med upp till 5% mangan har för första gången tillverkats med denna metod. Omfattande studier har gjorts av de mekanismer som styr strömtransporten i dessa implanterade nanotrådar. Vi har demonstrerat att den dominerande transportmekanismen är olika typer av s.k. ”hopping”-processer där laddningsbärare fysiskt hoppar mellan olika diskreta lokaliserade defekter i trådarna. Denna typ av transportmekanismer är typisk för oordnade material. För nanotrådarna uppkommer denna oordning framför allt i samband med implanteringen av manganjonerna. Vi har utvecklat en modell där resistansens beroende på temperatur och magnetfält kan förstås i termer av magnetisk växelverkan mellan det pålagda magnetfältet och manganatomernas spinn, såväl som växelverkan mellan dessa spinn och spinnet hos laddningsbärarna. Den sistnämnda växelverkan resulterar i intressanta magnetiska ”bubblor” som kallas polaroner. Under inverkan av ett magnetfält uppvisar nanotrådarna typiskt en negativ magnetoresistans, d.v.s. resistansen sjunker med ökande fältstyrka. Detta fenomen har sitt ursprung i att sannolikheten för ”hopping”-processer beror på den relativa orienteringen mellan spinnet hos laddningsbärarna och manganatomernas spinn. Med ökat magnetfält linjeras dessa spinn upp, vilket ökar den effektiva rörligheten hos laddningsbärarna vilket i sin tur resulterar i en lägre resistans. En maximal negativ magnetoresistans på cirka 85% har uppmätts vid låga temperaturer och höga magnetfält. De magnetiska trådar som studerats här har inte tillräckligt hög koncentration av laddningsbärare för att uppvisa ferromagnetism (d.v.s. att hela tråden beter sig som en magnet), framför allt beroende på defekter som skapas vid implanteringen. I den sista artikeln visar vi att implantering av mangan i nanotrådar där mängden laddningsbärare ökats genom att tillföra grundämnet zink vid växten resulterar i en svag ferromagnetism. Denna strategi lovar gott för den övergripande målsättningen med projektet att tillverka ferromagnetiska nanotrådar där en kontakt runt en nanotråd kontrollerar koncentrationen av laddningsbärare, och därmed möjliggör tillverkning av elektriskt styrda magnetiska halvledarbaserade nanostrukturer kompatibla med kiselteknologi. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Prof. Gupta, Jay, Ohio State University, USA
organization
publishing date
type
Thesis
publication status
published
subject
keywords
hopping conduction, ferromagnetism, ion-implantation, Nanowire, GaMnAs, magnetoresistance, Fysicumarkivet A:2014:Paschoal
categories
Higher Education
pages
182 pages
defense location
Auditorium B, Department of Physics, Sölvegatan 14, Lund University Faculty of Engineering.
defense date
2014-04-04 09:15:00
ISBN
978-91-7473-905-3
language
English
LU publication?
yes
additional info
Acknowledgements The financial support from nmC@LU, Halmstad University, Linneaus University, the Swedish Research Council (VR), the Knut and Alice Wallenberg Foundation, the Swedish National Board for Industrial, Technological Development, the Swedish Foundation for Strategic Research, the Nordforsk research network “Nanospintronics; theory and simulations”, the Pará Education Secretary (SEDUC) and the Pará Government School (EGPA). Also to the Sprintronic Team (Lund University, Halmstad University, Linneaus University, Friedrich-Schiller University - Germany and SEDUC - Brazil)
id
328d0f4f-5fcb-4eb7-9679-84697819accf (old id 4355491)
date added to LUP
2016-04-04 12:55:06
date last changed
2020-09-16 15:51:31
@phdthesis{328d0f4f-5fcb-4eb7-9679-84697819accf,
  abstract     = {{This thesis focuses on the magnetotransport properties of highly Mn-doped crystalline GaAs nanowires. The GaAs nanowires were first grown by metal-organic vapor phase epitaxy from gold seed particles, and subsequently implanted with Mn ions under varying conditions, e.g., ion fluence and acceleration voltage. The implantation process was carefully analyzed and optimized within the research project. The resulting Mn-concentration in the nanowires ranges from 0.0001% to 5%. The implantation was carried out at elevated temperatures to facilitate dynamic annealing conditions at which most of the implantation-related defects are removed. After implantation, the nanowires were mechanically removed from the substrate to specially designed insulating SiO2/Si substrates optimized for magnetotransport measurements. The single nanowires were supplied with four contacts, defined by electron-beam lithography, for accurate transport measurements. The resistance of GaAs and GaAs: Zn nanowires was meticulously measured and analyzed in the temperature range from 300K to 1.6K, and with magnetic fields ranging from 0T to 8T. The magnetic field was applied both parallel and perpendicular to the nanowires. In addition, the magnetic properties of nanowires were probed using a superconductivity quantum interference device (SQUID) setup. The typical resistance for a highly Mn-doped (5%) nanowire increases from a few MOhm at 300K to several GOhm at 1.6K. More specifically, the temperature-dependence of the resistance shows transport regimes described by different models. The current-voltage characteristics become strongly non-linear as the temperature decreases and shows apparent power-law behavior at low temperatures. The transport data, from 50K to 180K, are interpreted in terms of the variable range hopping (VRH) mechanism and from 180K to 300K in terms of a nearest neighbor hopping (NNH) mechanism; both occur due to the disorder in the nanowires resulting from the implantation of Mn. Below 50K, the magnetotransport data exhibit a large 40% negative magnetoresistance with the magnetic field applied either in parallel or perpendicular to the nanowire. Complementary SQUID measurements under zero-field-cooled and field-cooled conditions, recorded at low magnetic fields, exhibit clear signs of the onset of a spin-glass phase with a spin-freezing temperature of about 16K. The high magnetoresistance is explained in terms of spin-dependent hopping in a complex magnetic nanowire landscape of magnetic polarons, separated by intermediate regions of Mn-impurity spins, forming a paramagnetic/spin-glass phase. Finally, magnetotransport experiments were carried out in a series of in-situ Zn-doped (p-type) GaAs nanowires implanted with different Mn-concentrations. The nanowires with the lowest Mn-concentration exhibit a low resistance of a few kOhms at 300K and a 4% positive magnetoresistance at 1.6K, which is well described by invoking a spin-split sub-band model, unlike nanowires with the highest Mn-concentration which show a high resistance of several MOhms at 300K and a large negative magnetoresistance of 85% at 1.6K. Sweeping the magnetic field back and forth for the samples with highest Mn-concentration reveals a small hysteresis, which signals the presence of a weak ferromagnetic state. Thus, co-doping with Zn appears promising for the goal of realizing ferromagnetic GaMnAs nanowires for future nanospintronics. In summary, this thesis shows that Mn-implanted GaAs nanowires indeed represent an interesting novel type of nanometer-scale building block for miniaturized spintronic devices compatible with mainstream silicon technology.}},
  author       = {{Paschoal, Waldomiro}},
  isbn         = {{978-91-7473-905-3}},
  keywords     = {{hopping conduction; ferromagnetism; ion-implantation; Nanowire; GaMnAs; magnetoresistance; Fysicumarkivet A:2014:Paschoal}},
  language     = {{eng}},
  school       = {{Lund University}},
  title        = {{Magnetotransport Studies of Mn Ion-Implanted Nanowires}},
  url          = {{https://lup.lub.lu.se/search/files/6020361/4357731.pdf}},
  year         = {{2014}},
}