Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Bioinspired Hydrogenase Models: The Mixed-Valence Triiron Complex [Fe3(CO)7(μ-edt)2] and Phosphine Derivatives [Fe3(CO)7-x (PPh3) x (μ-edt)2] (x = 1, 2) and [Fe3(CO)5(κ(2)-diphosphine)(μ-edt)2] as Proton Reduction Catalysts.

Rahaman, Ahibur LU ; Ghosh, Shishir ; Unwin, David G ; Basak-Modi, Sucharita ; Holt, Katherine B ; Kabir, Shariff E ; Nordlander, Ebbe LU ; Richmond, Michael G and Hogarth, Graeme (2014) In Organometallics 33(6). p.1356-1366
Abstract
The mixed-valence triiron complexes [Fe3(CO)7-x (PPh3) x (μ-edt)2] (x = 0-2; edt = SCH2CH2S) and [Fe3(CO)5(κ(2)-diphosphine)(μ-edt)2] (diphosphine = dppv, dppe, dppb, dppn) have been prepared and structurally characterized. All adopt an anti arrangement of the dithiolate bridges, and PPh3 substitution occurs at the apical positions of the outer iron atoms, while the diphosphine complexes exist only in the dibasal form in both the solid state and solution. The carbonyl on the central iron atom is semibridging, and this leads to a rotated structure between the bridged diiron center. IR studies reveal that all complexes are inert to protonation by HBF4·Et2O, but addition of acid to the pentacarbonyl complexes results in one-electron oxidation... (More)
The mixed-valence triiron complexes [Fe3(CO)7-x (PPh3) x (μ-edt)2] (x = 0-2; edt = SCH2CH2S) and [Fe3(CO)5(κ(2)-diphosphine)(μ-edt)2] (diphosphine = dppv, dppe, dppb, dppn) have been prepared and structurally characterized. All adopt an anti arrangement of the dithiolate bridges, and PPh3 substitution occurs at the apical positions of the outer iron atoms, while the diphosphine complexes exist only in the dibasal form in both the solid state and solution. The carbonyl on the central iron atom is semibridging, and this leads to a rotated structure between the bridged diiron center. IR studies reveal that all complexes are inert to protonation by HBF4·Et2O, but addition of acid to the pentacarbonyl complexes results in one-electron oxidation to yield the moderately stable cations [Fe3(CO)5(PPh3)2(μ-edt)2](+) and [Fe3(CO)5(κ(2)-diphosphine)(μ-edt)2](+), species which also result upon oxidation by [Cp2Fe][PF6]. The electrochemistry of the formally Fe(I)-Fe(II)-Fe(I) complexes has been investigated. Each undergoes a quasi-reversible oxidation, the potential of which is sensitive to phosphine substitution, generally occurring between 0.15 and 0.50 V, although [Fe3(CO)5(PPh3)2(μ-edt)2] is oxidized at -0.05 V. Reduction of all complexes is irreversible and is again sensitive to phosphine substitution, varying between -1.47 V for [Fe3(CO)7(μ-edt)2] and around -1.7 V for phosphine-substituted complexes. In their one-electron-reduced states, all complexes are catalysts for the reduction of protons to hydrogen, the catalytic overpotential being increased upon successive phosphine substitution. In comparison to the diiron complex [Fe2(CO)6(μ-edt)], [Fe3(CO)7(μ-edt)2] catalyzes proton reduction at 0.36 V less negative potentials. Electronic structure calculations have been carried out in order to fully elucidate the nature of the oxidation and reduction processes. In all complexes, the HOMO comprises an iron-iron bonding orbital localized between the two iron atoms not ligated by the semibridging carbonyl, while the LUMO is highly delocalized in nature and is antibonding between both pairs of iron atoms but also contains an antibonding dithiolate interaction. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Organometallics
volume
33
issue
6
pages
1356 - 1366
publisher
The American Chemical Society (ACS)
external identifiers
  • pmid:24748710
  • wos:000333478400006
  • scopus:84897008555
  • pmid:24748710
ISSN
1520-6041
DOI
10.1021/om400691q
language
English
LU publication?
yes
additional info
The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Chemical Physics (S) (011001060)
id
609df577-01ab-4c7a-84b3-abb9ee3f7c19 (old id 4429737)
date added to LUP
2016-04-01 10:16:14
date last changed
2022-01-25 21:33:45
@article{609df577-01ab-4c7a-84b3-abb9ee3f7c19,
  abstract     = {{The mixed-valence triiron complexes [Fe3(CO)7-x (PPh3) x (μ-edt)2] (x = 0-2; edt = SCH2CH2S) and [Fe3(CO)5(κ(2)-diphosphine)(μ-edt)2] (diphosphine = dppv, dppe, dppb, dppn) have been prepared and structurally characterized. All adopt an anti arrangement of the dithiolate bridges, and PPh3 substitution occurs at the apical positions of the outer iron atoms, while the diphosphine complexes exist only in the dibasal form in both the solid state and solution. The carbonyl on the central iron atom is semibridging, and this leads to a rotated structure between the bridged diiron center. IR studies reveal that all complexes are inert to protonation by HBF4·Et2O, but addition of acid to the pentacarbonyl complexes results in one-electron oxidation to yield the moderately stable cations [Fe3(CO)5(PPh3)2(μ-edt)2](+) and [Fe3(CO)5(κ(2)-diphosphine)(μ-edt)2](+), species which also result upon oxidation by [Cp2Fe][PF6]. The electrochemistry of the formally Fe(I)-Fe(II)-Fe(I) complexes has been investigated. Each undergoes a quasi-reversible oxidation, the potential of which is sensitive to phosphine substitution, generally occurring between 0.15 and 0.50 V, although [Fe3(CO)5(PPh3)2(μ-edt)2] is oxidized at -0.05 V. Reduction of all complexes is irreversible and is again sensitive to phosphine substitution, varying between -1.47 V for [Fe3(CO)7(μ-edt)2] and around -1.7 V for phosphine-substituted complexes. In their one-electron-reduced states, all complexes are catalysts for the reduction of protons to hydrogen, the catalytic overpotential being increased upon successive phosphine substitution. In comparison to the diiron complex [Fe2(CO)6(μ-edt)], [Fe3(CO)7(μ-edt)2] catalyzes proton reduction at 0.36 V less negative potentials. Electronic structure calculations have been carried out in order to fully elucidate the nature of the oxidation and reduction processes. In all complexes, the HOMO comprises an iron-iron bonding orbital localized between the two iron atoms not ligated by the semibridging carbonyl, while the LUMO is highly delocalized in nature and is antibonding between both pairs of iron atoms but also contains an antibonding dithiolate interaction.}},
  author       = {{Rahaman, Ahibur and Ghosh, Shishir and Unwin, David G and Basak-Modi, Sucharita and Holt, Katherine B and Kabir, Shariff E and Nordlander, Ebbe and Richmond, Michael G and Hogarth, Graeme}},
  issn         = {{1520-6041}},
  language     = {{eng}},
  number       = {{6}},
  pages        = {{1356--1366}},
  publisher    = {{The American Chemical Society (ACS)}},
  series       = {{Organometallics}},
  title        = {{Bioinspired Hydrogenase Models: The Mixed-Valence Triiron Complex [Fe3(CO)7(μ-edt)2] and Phosphine Derivatives [Fe3(CO)7-x (PPh3) x (μ-edt)2] (x = 1, 2) and [Fe3(CO)5(κ(2)-diphosphine)(μ-edt)2] as Proton Reduction Catalysts.}},
  url          = {{http://dx.doi.org/10.1021/om400691q}},
  doi          = {{10.1021/om400691q}},
  volume       = {{33}},
  year         = {{2014}},
}