Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications

Khain, A ; Pokrovsky, A ; Pinsky, M ; Seifert, A and Phillips, Vaughan LU orcid (2004) In Journal of Atmospheric Sciences 61(24). p.2963-2982
Abstract
An updated version of the spectral ( bin) microphysics cloud model developed at the Hebrew University of Jerusalem [ the Hebrew University Cloud Model (HUCM)] is described. The model microphysics is based on the solution of the equation system for size distribution functions of cloud hydrometeors of seven types ( water drops, plate-, columnar-, and branch-like ice crystals, aggregates, graupel, and hail/frozen drops) as well as for the size distribution function of aerosol particles playing the role of cloud condensational nuclei (CCN). Each size distribution function contains 33 mass bins. The conditions allowing numerical reproduction of a narrow droplet spectrum up to the level of homogeneous freezing in deep convective clouds developed... (More)
An updated version of the spectral ( bin) microphysics cloud model developed at the Hebrew University of Jerusalem [ the Hebrew University Cloud Model (HUCM)] is described. The model microphysics is based on the solution of the equation system for size distribution functions of cloud hydrometeors of seven types ( water drops, plate-, columnar-, and branch-like ice crystals, aggregates, graupel, and hail/frozen drops) as well as for the size distribution function of aerosol particles playing the role of cloud condensational nuclei (CCN). Each size distribution function contains 33 mass bins. The conditions allowing numerical reproduction of a narrow droplet spectrum up to the level of homogeneous freezing in deep convective clouds developed in smoky air are discussed and illustrated using as an example Rosenfeld and Woodley's case of deep Texas clouds. The effects of breakup on precipitation are illustrated by the use of a new collisional breakup scheme. Variation of the microphysical structure of a melting layer is illustrated by using the novel melting procedure. It is shown that an increase in the aerosol concentration leads to a decrease in precipitation from single clouds both under continental and maritime conditions. To provide similar precipitation, a cloud developed in smoky air should have a higher top height. The mechanisms are discussed through which aerosols decrease precipitation efficiency. It is shown that aerosols affect the vertical profile of the convective heating caused by latent heat release. (Less)
Please use this url to cite or link to this publication:
author
; ; ; and
publishing date
type
Contribution to journal
publication status
published
subject
in
Journal of Atmospheric Sciences
volume
61
issue
24
pages
2963 - 2982
publisher
Amer Meteorological Soc
external identifiers
  • wos:000225866200001
  • scopus:12144277893
ISSN
1520-0469
DOI
10.1175/JAS-3350.1
language
English
LU publication?
no
id
faa96dfd-f097-4727-ade1-374da68da2a8 (old id 4587583)
date added to LUP
2016-04-01 11:54:47
date last changed
2022-04-28 21:50:28
@article{faa96dfd-f097-4727-ade1-374da68da2a8,
  abstract     = {{An updated version of the spectral ( bin) microphysics cloud model developed at the Hebrew University of Jerusalem [ the Hebrew University Cloud Model (HUCM)] is described. The model microphysics is based on the solution of the equation system for size distribution functions of cloud hydrometeors of seven types ( water drops, plate-, columnar-, and branch-like ice crystals, aggregates, graupel, and hail/frozen drops) as well as for the size distribution function of aerosol particles playing the role of cloud condensational nuclei (CCN). Each size distribution function contains 33 mass bins. The conditions allowing numerical reproduction of a narrow droplet spectrum up to the level of homogeneous freezing in deep convective clouds developed in smoky air are discussed and illustrated using as an example Rosenfeld and Woodley's case of deep Texas clouds. The effects of breakup on precipitation are illustrated by the use of a new collisional breakup scheme. Variation of the microphysical structure of a melting layer is illustrated by using the novel melting procedure. It is shown that an increase in the aerosol concentration leads to a decrease in precipitation from single clouds both under continental and maritime conditions. To provide similar precipitation, a cloud developed in smoky air should have a higher top height. The mechanisms are discussed through which aerosols decrease precipitation efficiency. It is shown that aerosols affect the vertical profile of the convective heating caused by latent heat release.}},
  author       = {{Khain, A and Pokrovsky, A and Pinsky, M and Seifert, A and Phillips, Vaughan}},
  issn         = {{1520-0469}},
  language     = {{eng}},
  number       = {{24}},
  pages        = {{2963--2982}},
  publisher    = {{Amer Meteorological Soc}},
  series       = {{Journal of Atmospheric Sciences}},
  title        = {{Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications}},
  url          = {{http://dx.doi.org/10.1175/JAS-3350.1}},
  doi          = {{10.1175/JAS-3350.1}},
  volume       = {{61}},
  year         = {{2004}},
}