Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Exploiting antenna correlation in measured massive MIMO channels

Flordelis, Jose LU ; Hu, Sha LU ; Rusek, Fredrik LU ; Edfors, Ove LU orcid ; Dahman, Ghassan LU ; Gao, Xiang LU and Tufvesson, Fredrik LU orcid (2016) 27th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'16)
Abstract

We investigate antenna correlation of an M-antenna massive multiple-input multiple-output (MIMO) setup with the purpose of obtaining a low-rank representation of the instantaneous massive MIMO channel. Low-rank representation bases using short-term and long-term antenna correlation statistics are defined, and their performance is evaluated with data sets obtained from channel measurements in both indoor and outdoor environments at 2.6 GHz. Our results indicate that the short-term bases can capture a larger amount of the channel energy compared to the long-term ones, but they have a limited timespan, one coherence time or less. On the other hand, the long-term bases are stable over time-spans of a few seconds. Hence, they can be obtained... (More)

We investigate antenna correlation of an M-antenna massive multiple-input multiple-output (MIMO) setup with the purpose of obtaining a low-rank representation of the instantaneous massive MIMO channel. Low-rank representation bases using short-term and long-term antenna correlation statistics are defined, and their performance is evaluated with data sets obtained from channel measurements in both indoor and outdoor environments at 2.6 GHz. Our results indicate that the short-term bases can capture a larger amount of the channel energy compared to the long-term ones, but they have a limited timespan, one coherence time or less. On the other hand, the long-term bases are stable over time-spans of a few seconds. Hence, they can be obtained relatively easily. We also investigate a rank-p vector-scalar LMMSE channel estimator that exploits antenna correlation. Our results show that the investigated estimator can achieve a performance similar to that of full-rank LMMSE at a (2p + 1)/M times lower cost. The investigated estimator may be used in conjunction with estimators that exploit correlation in the frequency and time domains or, alternatively, in situations in which these estimators cannot be used, e.g., when pilot separation is larger than the channel coherence bandwidth or time.

(Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; and
organization
publishing date
type
Chapter in Book/Report/Conference proceeding
publication status
published
subject
host publication
2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, PIMRC 2016
article number
7794664
publisher
IEEE - Institute of Electrical and Electronics Engineers Inc.
conference name
27th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'16)
conference location
Valencia, Spain
conference dates
2016-09-04 - 2016-09-07
external identifiers
  • scopus:85010032081
ISBN
9781509032549
DOI
10.1109/PIMRC.2016.7794664
language
English
LU publication?
yes
id
68f66d39-8a88-4351-a8be-8480a10c1365
date added to LUP
2016-08-22 14:26:21
date last changed
2024-03-07 10:58:58
@inproceedings{68f66d39-8a88-4351-a8be-8480a10c1365,
  abstract     = {{<p>We investigate antenna correlation of an M-antenna massive multiple-input multiple-output (MIMO) setup with the purpose of obtaining a low-rank representation of the instantaneous massive MIMO channel. Low-rank representation bases using short-term and long-term antenna correlation statistics are defined, and their performance is evaluated with data sets obtained from channel measurements in both indoor and outdoor environments at 2.6 GHz. Our results indicate that the short-term bases can capture a larger amount of the channel energy compared to the long-term ones, but they have a limited timespan, one coherence time or less. On the other hand, the long-term bases are stable over time-spans of a few seconds. Hence, they can be obtained relatively easily. We also investigate a rank-p vector-scalar LMMSE channel estimator that exploits antenna correlation. Our results show that the investigated estimator can achieve a performance similar to that of full-rank LMMSE at a (2p + 1)/M times lower cost. The investigated estimator may be used in conjunction with estimators that exploit correlation in the frequency and time domains or, alternatively, in situations in which these estimators cannot be used, e.g., when pilot separation is larger than the channel coherence bandwidth or time.</p>}},
  author       = {{Flordelis, Jose and Hu, Sha and Rusek, Fredrik and Edfors, Ove and Dahman, Ghassan and Gao, Xiang and Tufvesson, Fredrik}},
  booktitle    = {{2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, PIMRC 2016}},
  isbn         = {{9781509032549}},
  language     = {{eng}},
  month        = {{12}},
  publisher    = {{IEEE - Institute of Electrical and Electronics Engineers Inc.}},
  title        = {{Exploiting antenna correlation in measured massive MIMO channels}},
  url          = {{https://lup.lub.lu.se/search/files/11792298/paper.pdf}},
  doi          = {{10.1109/PIMRC.2016.7794664}},
  year         = {{2016}},
}