Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Spatial and temporal metrology of intense attosecond pulses

Coudert-Alteirac, Helene LU (2018)
Abstract
Attosecond pulses are short enough to capture the electronic dynamics in atoms and molecules. The work presented in this thesis deals with the generation and optimization of attosecond extreme-ultraviolet (XUV) pulses. The goal is to progress towards the realization of time-resolved nonlinear experiments at the intense XUV beamline of the Lund High-Power Laser Facility.
The XUV flux was optimized using a loose focusing geometry. This led to a formalization of scaling laws for high-order harmonic generation (HHG) and more generally for nonlinear optics in gases, e.g., filamentation. A high intensity on target was achieved by focusing the high XUV flux using a pair of toroidal mirrors in a Wolter-like configuration.
Spatial... (More)
Attosecond pulses are short enough to capture the electronic dynamics in atoms and molecules. The work presented in this thesis deals with the generation and optimization of attosecond extreme-ultraviolet (XUV) pulses. The goal is to progress towards the realization of time-resolved nonlinear experiments at the intense XUV beamline of the Lund High-Power Laser Facility.
The XUV flux was optimized using a loose focusing geometry. This led to a formalization of scaling laws for high-order harmonic generation (HHG) and more generally for nonlinear optics in gases, e.g., filamentation. A high intensity on target was achieved by focusing the high XUV flux using a pair of toroidal mirrors in a Wolter-like configuration.
Spatial properties of the high-order harmonics were studied in details. Wavefront measurements of the harmonics were performed, both in the far field and after the refocusing optics, as well as spectrally resolved measurements. The origin of XUV aberrations is discussed, and the variation of the harmonic divergence depending on the generation position relative to the fundamental focus is studied.
The intense XUV beamline and its first nonlinear experiments are presented. An interferometer to split-and-delay the beam was developed. Tests were performed, showing the capacity to provide attosecond resolution for
time-resolved experiments in the beamline.
The high XUV intensity on target combined with the attosecond interferometer opens the door to perform XUV-pump XUV-probe experiments. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Dr Zaïr, Amelle, King's College, London, United Kingdom
organization
publishing date
type
Thesis
publication status
published
subject
keywords
Ultrafast optics, High-order harmonic generation, Filamentation, Attosecond, Femtosecond, Extreme ultraviolet, Wavefront measurement, Optical metrology, XUV optics, interferometry, Pump-probe, Fysicumarkivet A:2018:Coudert-Alteirac
pages
139 pages
publisher
Department of Physics, Lund University
defense location
Rydbergsalen, Fysicum, Professorsgatan 1, Lund University, Faculty of Engineering LTH.
defense date
2018-09-28 13:15:00
ISBN
978-91-7753-785-4
978-91-7753-784-7
project
Spatial and temporal metrology of intense attosecond pulses
language
English
LU publication?
yes
id
73c23234-93e8-417d-b902-3a74c4f3b782
date added to LUP
2018-08-28 15:20:52
date last changed
2018-11-21 21:41:16
@phdthesis{73c23234-93e8-417d-b902-3a74c4f3b782,
  abstract     = {{Attosecond pulses are short enough to capture the electronic dynamics in atoms and molecules. The work presented in this thesis deals with the generation and optimization of attosecond extreme-ultraviolet (XUV) pulses. The goal is to progress towards the realization of time-resolved nonlinear experiments at the intense XUV beamline of the Lund High-Power Laser Facility.<br/>The XUV flux was optimized using a loose focusing geometry. This led to a formalization of scaling laws for high-order harmonic generation (HHG) and more generally for nonlinear optics in gases, e.g., filamentation. A high intensity on target was achieved by focusing the high XUV flux using a pair of toroidal mirrors in a Wolter-like configuration.<br/>Spatial properties of the high-order harmonics were studied in details. Wavefront measurements of the harmonics were performed, both in the far field and after the refocusing optics, as well as spectrally resolved measurements. The origin of XUV aberrations is discussed, and the variation of the harmonic divergence depending on the generation position relative to the fundamental focus is studied.<br/>The intense XUV beamline and its first nonlinear experiments are presented. An interferometer to split-and-delay the beam was developed. Tests were performed, showing the capacity to provide attosecond resolution for<br/>time-resolved experiments in the beamline.<br/>The high XUV intensity on target combined with the attosecond interferometer opens the door to perform XUV-pump XUV-probe experiments.}},
  author       = {{Coudert-Alteirac, Helene}},
  isbn         = {{978-91-7753-785-4}},
  keywords     = {{Ultrafast optics; High-order harmonic generation; Filamentation; Attosecond; Femtosecond; Extreme ultraviolet; Wavefront measurement; Optical metrology; XUV optics; interferometry; Pump-probe; Fysicumarkivet A:2018:Coudert-Alteirac}},
  language     = {{eng}},
  publisher    = {{Department of Physics, Lund University}},
  school       = {{Lund University}},
  title        = {{Spatial and temporal metrology of intense attosecond pulses}},
  url          = {{https://lup.lub.lu.se/search/files/50186506/helene_coudert_thesis_online.pdf}},
  year         = {{2018}},
}