Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

How nanochannel confinement affects the DNA melting transition within the Poland-Scheraga model.

Reiter-Schad, Michaela LU ; Werner, Erik ; Tegenfeldt, Jonas LU orcid ; Mehlig, Bernhard and Ambjörnsson, Tobias LU (2015) In Journal of Chemical Physics 143(11).
Abstract
When double-stranded DNA molecules are heated, or exposed to denaturing agents, the two strands are separated. The statistical physics of this process has a long history and is commonly described in terms of the Poland-Scheraga (PS) model. Crucial to this model is the configurational entropy for a melted region (compared to the entropy of an intact region of the same size), quantified by the loop factor. In this study, we investigate how confinement affects the DNA melting transition, by using the loop factor for an ideal Gaussian chain. By subsequent numerical solutions of the PS model, we demonstrate that the melting temperature depends on the persistence lengths of single-stranded and double-stranded DNA. For realistic values of the... (More)
When double-stranded DNA molecules are heated, or exposed to denaturing agents, the two strands are separated. The statistical physics of this process has a long history and is commonly described in terms of the Poland-Scheraga (PS) model. Crucial to this model is the configurational entropy for a melted region (compared to the entropy of an intact region of the same size), quantified by the loop factor. In this study, we investigate how confinement affects the DNA melting transition, by using the loop factor for an ideal Gaussian chain. By subsequent numerical solutions of the PS model, we demonstrate that the melting temperature depends on the persistence lengths of single-stranded and double-stranded DNA. For realistic values of the persistence lengths, the melting temperature is predicted to decrease with decreasing channel diameter. We also demonstrate that confinement broadens the melting transition. These general findings hold for the three scenarios investigated: 1. homo-DNA, i.e., identical basepairs along the DNA molecule, 2. random sequence DNA, and 3. "real" DNA, here T4 phage DNA. We show that cases 2 and 3 in general give rise to broader transitions than case 1. Case 3 exhibits a similar phase transition as case 2 provided the random sequence DNA has the same ratio of AT to GC basepairs (A - adenine, T - thymine, G - guanine, C - cytosine). A simple analytical estimate for the shift in melting temperature is provided as a function of nanochannel diameter. For homo-DNA, we also present an analytical prediction of the melting probability as a function of temperature. (Less)
Please use this url to cite or link to this publication:
author
; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Journal of Chemical Physics
volume
143
issue
11
article number
115101
publisher
American Institute of Physics (AIP)
external identifiers
  • pmid:26395739
  • scopus:84942023370
  • pmid:26395739
  • wos:000361843900064
ISSN
0021-9606
DOI
10.1063/1.4930220
language
English
LU publication?
yes
id
d070ef1c-db17-48d9-98c6-923b78813756 (old id 8035240)
date added to LUP
2016-04-01 10:21:41
date last changed
2024-01-06 14:41:37
@article{d070ef1c-db17-48d9-98c6-923b78813756,
  abstract     = {{When double-stranded DNA molecules are heated, or exposed to denaturing agents, the two strands are separated. The statistical physics of this process has a long history and is commonly described in terms of the Poland-Scheraga (PS) model. Crucial to this model is the configurational entropy for a melted region (compared to the entropy of an intact region of the same size), quantified by the loop factor. In this study, we investigate how confinement affects the DNA melting transition, by using the loop factor for an ideal Gaussian chain. By subsequent numerical solutions of the PS model, we demonstrate that the melting temperature depends on the persistence lengths of single-stranded and double-stranded DNA. For realistic values of the persistence lengths, the melting temperature is predicted to decrease with decreasing channel diameter. We also demonstrate that confinement broadens the melting transition. These general findings hold for the three scenarios investigated: 1. homo-DNA, i.e., identical basepairs along the DNA molecule, 2. random sequence DNA, and 3. "real" DNA, here T4 phage DNA. We show that cases 2 and 3 in general give rise to broader transitions than case 1. Case 3 exhibits a similar phase transition as case 2 provided the random sequence DNA has the same ratio of AT to GC basepairs (A - adenine, T - thymine, G - guanine, C - cytosine). A simple analytical estimate for the shift in melting temperature is provided as a function of nanochannel diameter. For homo-DNA, we also present an analytical prediction of the melting probability as a function of temperature.}},
  author       = {{Reiter-Schad, Michaela and Werner, Erik and Tegenfeldt, Jonas and Mehlig, Bernhard and Ambjörnsson, Tobias}},
  issn         = {{0021-9606}},
  language     = {{eng}},
  number       = {{11}},
  publisher    = {{American Institute of Physics (AIP)}},
  series       = {{Journal of Chemical Physics}},
  title        = {{How nanochannel confinement affects the DNA melting transition within the Poland-Scheraga model.}},
  url          = {{http://dx.doi.org/10.1063/1.4930220}},
  doi          = {{10.1063/1.4930220}},
  volume       = {{143}},
  year         = {{2015}},
}