Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Land-atmosphere interactions and regional Earth system dynamics due to natural and anthropogenic vegetation changes

Wu, Minchao LU orcid (2017)
Abstract
Observation and modelling studies have indicated that the global land surfaces have been undergoing significant changes in the past few decades, driven by both natural and anthropogenic factors, such as changes in ecosystem productivity, fire and land use. Land surface changes can potentially influence local and regional climate through land-atmosphere interactions. Continued greenhouse gas emissions and current socioeconomic trends are expected to drive further land cover changes in the future, thus further understanding of land-atmosphere interactions including different feedback mechanisms is necessary to understand how future climate change will continue unfolding. Land-atmosphere interactions vary under different conditions. The... (More)
Observation and modelling studies have indicated that the global land surfaces have been undergoing significant changes in the past few decades, driven by both natural and anthropogenic factors, such as changes in ecosystem productivity, fire and land use. Land surface changes can potentially influence local and regional climate through land-atmosphere interactions. Continued greenhouse gas emissions and current socioeconomic trends are expected to drive further land cover changes in the future, thus further understanding of land-atmosphere interactions including different feedback mechanisms is necessary to understand how future climate change will continue unfolding. Land-atmosphere interactions vary under different conditions. The strength of local land-atmosphere interactions depends on the capabilities of different land covers to control surface energy and mass exchanges, including latent and sensible heat, water and carbon. Local feedbacks can also influence regional to global climate, such as circulation changes that affect regional energy and moisture transport, or cloud cover that affects incoming radiation. Regional Earth system models (RESMs) with high resolution dynamical downscaling approaches and incorporating individual-based vegetation dynamics add value to the traditional global climate modelling studies for regions with highly complex topography or/and pronounced seasonal water deficits, potentially allowing for more refined land-atmosphere interactions studies thanks to more realistic vegetation dynamics and biophysical feedbacks, more accurate regional climate dynamics and overall richer spatial detail.
In this thesis, I investigated regional land surface changes due to natural and anthropogenic vegetation changes and their impacts on land-atmosphere interactions, by applying a dynamical downscaling approach with RCA-GUESS, a RESM that couples the Rossby Centre regional climate model RCA4 to LPJ-GUESS, an ecosystem model that combines an individual-based representation of vegetation structure and dynamics with process-based physiology and biogeochemistry. Europe, Africa and South America were chosen as research domains. In the land surface study based on LPJ-GUESS simulations, I showed that future changes in the fire regime over Europe, driven by climate and socioeconomic change, were important for projecting future land surface changes. Fire-vegetation interactions and socioeconomic effects emerged as important uncertainties for future burned area. My study on land-atmosphere interactions based on RCA-GUESS simulations indicated that the hydrological cycle in the tropics was sensitive to land cover changes over semi-arid regions in Africa, and that biophysical feedbacks were important through their modulation of regional circulation patterns. A study based on the analysis of empirical datasets and CMIP5 ESMs outputs revealed that simulated climate biases are the main cause of model-data discrepancies. Models and data shared a marked hydrological relationship that suggested that decreased precipitation and land use change constituted the largest threats to the future Amazon forest. A study based on RCA-GUESS simulations with a realistic land use scenario identified both positive and negative impacts of land use on natural ecosystem productivity in the Amazon through its effects on the local and the regional climate. (Less)
Abstract (Swedish)
Observationer och modelleringsstudier har visat att den globala markytan har genomgått betydande förändringar under de senaste decennierna, drivet av både naturliga och antropogena faktorer, såsom förändringar i ekosystemens produktivitet, bränder och markanvändning. Markytans förändringar kan potentiellt påverka det lokala och regionala klimatet genom förändringar i processer som sker mellan jordytan och atmosfären. Markanvändningsförändringar förväntas fortsätta i framtiden och det är nödvändigt att öka förståelsen av interaktioner mellan jordytan och atmosfären, inklusive olika återkopplingsmekanismer, för att öka vår kunskap om framtida klimatförändringar. Styrkan i lokala interaktioner mellan landytan och atmosfären beror på olika... (More)
Observationer och modelleringsstudier har visat att den globala markytan har genomgått betydande förändringar under de senaste decennierna, drivet av både naturliga och antropogena faktorer, såsom förändringar i ekosystemens produktivitet, bränder och markanvändning. Markytans förändringar kan potentiellt påverka det lokala och regionala klimatet genom förändringar i processer som sker mellan jordytan och atmosfären. Markanvändningsförändringar förväntas fortsätta i framtiden och det är nödvändigt att öka förståelsen av interaktioner mellan jordytan och atmosfären, inklusive olika återkopplingsmekanismer, för att öka vår kunskap om framtida klimatförändringar. Styrkan i lokala interaktioner mellan landytan och atmosfären beror på olika landskaps förmåga att påverka utbytet av energi, vatten och växthusgaser. Även när dessa växelverkan sker lokalt kan det påverka klimatet regionalt och globalt genom cirkulationsförändringar som påverkar energi- och fukttransport, eller förändringar i molntäcket som i sin turpåverkar inkommande strålningen. Nedskalning av resultat från globala klimatmodeller med regionala jordningssystemmodeller (RESMs) förbättrar klimatsimuleringars rumsliga detaljer och återger mer korrekt klimatdynamik, speciellt i regioner med varierande topografi.
I denna avhandling använde jag en dynamisk nedskalningsmodell RCA-GUESS, en RESM som kopplar Rossby Centres regionala klimatmodell RCA4 till LPJ-GUESS, en ekosystemmodell som kombinerar en individbaserad representation av vegetationsstruktur och dynamik med processbaserad fysiologi och biogeokemi. Jag undersökte regionala markyteförändringar och relaterade interaktioner mellan jordytan och atmosfären över tre olika geografiska områden. Detta arbete bidrar till förståelsen av rollen av vegetationsdynamik och socioekonomiska faktorer − såsom markanvändning och bränder − i regional jordsystemsdynamik. I en markytestudie baserad på LPJ-GUESS simuleringar visar jag att framtida förändringar i brandregimen i Europa orsakad av klimat- och socioekonomiska förändringar är viktiga för att förutsäga framtida förändringar av markytan. Samspel mellan bränder och vegetation och socioekonomiska effekter identifierades som viktiga osäkerheter för framtida brandområden. Studien om land-atmosfär interaktioner baserade på RCA-GUESS simuleringar visar att det hydrologiska kretsloppet i tropikerna är känsligt för förändringar av marktäcket i halvtorra områden i Afrika, och att biofysiska kopplingar är viktiga genom deras förändrade regionala cirkulationsmönster. En studie baserad på analys av empiriska dataset och CMIP5 jordsystemsmodeller (ESMs) visar att bias hos simulerat klimat är den huvudsakliga orsaken till diskrepans mellan modeller och data. Modeller och data visar på ett liknande hydrologiskt förhållande som antyder att minskad nederbörd och ändrad markanvändning utgör de huvudsakliga hoten för den framtida ecosystemet i Amazonas. En uppföljningsstudie baserad på RCA-GUESS simuleringar med realistiskt markanvändningsscenario visar de potentiella effekterna av markanvändning på de naturliga ekosystemens produktivitet i Amazonas som uppstår i och med påverkan på det lokala och regionala klimatet. (Less)
Please use this url to cite or link to this publication:
author
supervisor
opponent
  • Dr. Delire, Christine, Centre National de Recherche Météorologique, Toulouse, France
organization
publishing date
type
Thesis
publication status
published
subject
keywords
land-atmosphere interactions, RCA-GUESS, LPJ-GUESS, Vegetation dynamics, Fire
pages
55 pages
publisher
Lund University, Faculty of Science, Department of Physical Geography and Ecosystem Science
defense location
Geocentrum I, lecture hall "Världen", Sölvegatan 10, Lund
defense date
2017-02-03 10:00:00
ISBN
978-91-85793-74-7
978-91-85793-73-0
project
Land-atmosphere interactions and regional Earth system dynamics due to natural and anthropogenic vegetation changes
language
English
LU publication?
yes
id
c54a452c-039f-488b-923f-91540663f4cd
date added to LUP
2017-01-12 01:41:48
date last changed
2019-09-09 13:19:12
@phdthesis{c54a452c-039f-488b-923f-91540663f4cd,
  abstract     = {{Observation and modelling studies have indicated that the global land surfaces have been undergoing significant changes in the past few decades, driven by both natural and anthropogenic factors, such as changes in ecosystem productivity, fire and land use. Land surface changes can potentially influence local and regional climate through land-atmosphere interactions. Continued greenhouse gas emissions and current socioeconomic trends are expected to drive further land cover changes in the future, thus further understanding of land-atmosphere interactions including different feedback mechanisms is necessary to understand how future climate change will continue unfolding. Land-atmosphere interactions vary under different conditions. The strength of local land-atmosphere interactions depends on the capabilities of different land covers to control surface energy and mass exchanges, including latent and sensible heat, water and carbon. Local feedbacks can also influence regional to global climate, such as circulation changes that affect regional energy and moisture transport, or cloud cover that affects incoming radiation. Regional Earth system models (RESMs) with high resolution dynamical downscaling approaches and incorporating individual-based vegetation dynamics add value to the traditional global climate modelling studies for regions with highly complex topography or/and pronounced seasonal water deficits, potentially allowing for more refined land-atmosphere interactions studies thanks to more realistic vegetation dynamics and biophysical feedbacks, more accurate regional climate dynamics and overall richer spatial detail.<br/>In this thesis, I investigated regional land surface changes due to natural and anthropogenic vegetation changes and their impacts on land-atmosphere interactions, by applying a dynamical downscaling approach with RCA-GUESS, a RESM that couples the Rossby Centre regional climate model RCA4 to LPJ-GUESS, an ecosystem model that combines an individual-based representation of vegetation structure and dynamics with process-based physiology and biogeochemistry. Europe, Africa and South America were chosen as research domains. In the land surface study based on LPJ-GUESS simulations, I showed that future changes in the fire regime over Europe, driven by climate and socioeconomic change, were important for projecting future land surface changes. Fire-vegetation interactions and socioeconomic effects emerged as important uncertainties for future burned area. My study on land-atmosphere interactions based on RCA-GUESS simulations indicated that the hydrological cycle in the tropics was sensitive to land cover changes over semi-arid regions in Africa, and that biophysical feedbacks were important through their modulation of regional circulation patterns. A study based on the analysis of empirical datasets and CMIP5 ESMs outputs revealed that simulated climate biases are the main cause of model-data discrepancies. Models and data shared a marked hydrological relationship that suggested that decreased precipitation and land use change constituted the largest threats to the future Amazon forest. A study based on RCA-GUESS simulations with a realistic land use scenario identified both positive and negative impacts of land use on natural ecosystem productivity in the Amazon through its effects on the local and the regional climate.}},
  author       = {{Wu, Minchao}},
  isbn         = {{978-91-85793-74-7}},
  keywords     = {{land-atmosphere interactions; RCA-GUESS; LPJ-GUESS; Vegetation dynamics; Fire}},
  language     = {{eng}},
  publisher    = {{Lund University, Faculty of Science, Department of Physical Geography and Ecosystem Science}},
  school       = {{Lund University}},
  title        = {{Land-atmosphere interactions and regional Earth system dynamics due to natural and anthropogenic vegetation changes}},
  url          = {{https://lup.lub.lu.se/search/files/19729345/Kappa_v2.0_mediatryck.pdf}},
  year         = {{2017}},
}