Advanced

Predator induced morphological plasticity across local populations of a fresh water snail

Brönmark, Christer LU ; Lakowitz, Thomas LU and Hollander, Johan LU (2011) In PLoS ONE 6(7).
Abstract
The expression of anti-predator adaptations may vary on a spatial scale, favouring traits that are advantageous in a given predation regime. Besides, evolution of different developmental strategies depends to a large extent on the grain of the environment and may result in locally canalized adaptations or, alternatively, the evolution of phenotypic plasticity as different predation regimes may vary across habitats. We investigated the potential for predator-driven variability in shell morphology in a freshwater snail, Radix balthica, and whether found differences were a specialized ecotype adaptation or a result of phenotypic plasticity. Shell shape was quantified in snails from geographically separated pond populations with and without... (More)
The expression of anti-predator adaptations may vary on a spatial scale, favouring traits that are advantageous in a given predation regime. Besides, evolution of different developmental strategies depends to a large extent on the grain of the environment and may result in locally canalized adaptations or, alternatively, the evolution of phenotypic plasticity as different predation regimes may vary across habitats. We investigated the potential for predator-driven variability in shell morphology in a freshwater snail, Radix balthica, and whether found differences were a specialized ecotype adaptation or a result of phenotypic plasticity. Shell shape was quantified in snails from geographically separated pond populations with and without molluscivorous fish. Subsequently, in a common garden experiment we investigated reaction norms of snails from populations' with/without fish when exposed to chemical cues from tench (Tinca tinca), a molluscivorous fish. We found that snails from fish-free ponds had a narrow shell with a well developed spire, whereas snails that coexisted with fish had more rotund shells with a low spire, a shell morphology known to increase survival rate from shell-crushing predators. The common garden experiment mirrored the results from the field survey and showed that snails had similar reaction norms in response to chemical predator cues, i.e. the expression of shell shape was independent of population origin. Finally, we found significant differences for the trait means among populations, within each pond category (fish/fish free), suggesting a genetic component in the determination of shell morphology that has evolved independently across ponds. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
PLoS ONE
volume
6
issue
7
publisher
Public Library of Science
external identifiers
  • WOS:000292929500008
  • Scopus:79960446452
DOI
10.1371/journal.pone.0021773
project
BECC
language
English
LU publication?
yes
id
162a215f-0087-44b7-b36a-84dd494869dd (old id 1982138)
date added to LUP
2011-08-17 12:16:38
date last changed
2016-12-04 04:44:33
@misc{162a215f-0087-44b7-b36a-84dd494869dd,
  abstract     = {The expression of anti-predator adaptations may vary on a spatial scale, favouring traits that are advantageous in a given predation regime. Besides, evolution of different developmental strategies depends to a large extent on the grain of the environment and may result in locally canalized adaptations or, alternatively, the evolution of phenotypic plasticity as different predation regimes may vary across habitats. We investigated the potential for predator-driven variability in shell morphology in a freshwater snail, Radix balthica, and whether found differences were a specialized ecotype adaptation or a result of phenotypic plasticity. Shell shape was quantified in snails from geographically separated pond populations with and without molluscivorous fish. Subsequently, in a common garden experiment we investigated reaction norms of snails from populations' with/without fish when exposed to chemical cues from tench (Tinca tinca), a molluscivorous fish. We found that snails from fish-free ponds had a narrow shell with a well developed spire, whereas snails that coexisted with fish had more rotund shells with a low spire, a shell morphology known to increase survival rate from shell-crushing predators. The common garden experiment mirrored the results from the field survey and showed that snails had similar reaction norms in response to chemical predator cues, i.e. the expression of shell shape was independent of population origin. Finally, we found significant differences for the trait means among populations, within each pond category (fish/fish free), suggesting a genetic component in the determination of shell morphology that has evolved independently across ponds.},
  author       = {Brönmark, Christer and Lakowitz, Thomas and Hollander, Johan},
  language     = {eng},
  number       = {7},
  publisher    = {ARRAY(0xb8f2860)},
  series       = {PLoS ONE},
  title        = {Predator induced morphological plasticity across local populations of a fresh water snail},
  url          = {http://dx.doi.org/10.1371/journal.pone.0021773},
  volume       = {6},
  year         = {2011},
}