Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Evolution of the Vertebrate Pax4/6 Class of Genes with Focus on Its Novel Member, the Pax10 Gene

Feiner, Nathalie LU ; Meyer, Axel and Kuraku, Shigehiro (2014) In Genome Biology and Evolution 6(7). p.1635-1651
Abstract
Themembers of the paired box (Pax) family regulate key developmental pathways inmanymetazoans as tissue-specific transcription factors. Vertebrate genomes typically possess nine Pax genes (Pax1–9), which are derived from four proto-Pax genes in the vertebrate ancestor that were later expanded through the so-called two-round (2R) whole-genome duplication. A recent study proposed that pax6a genes of a subset of teleost fishes (namely, acanthopterygians) are remnants of a paralog generated in the 2R genome duplication, to be renamed pax6.3, and reported onemore group of vertebrate Pax genes (Pax6.2), most closely related to the Pax4/6 class. We propose to designate this newmember Pax10 instead and reconstruct the evolutionary history of the... (More)
Themembers of the paired box (Pax) family regulate key developmental pathways inmanymetazoans as tissue-specific transcription factors. Vertebrate genomes typically possess nine Pax genes (Pax1–9), which are derived from four proto-Pax genes in the vertebrate ancestor that were later expanded through the so-called two-round (2R) whole-genome duplication. A recent study proposed that pax6a genes of a subset of teleost fishes (namely, acanthopterygians) are remnants of a paralog generated in the 2R genome duplication, to be renamed pax6.3, and reported onemore group of vertebrate Pax genes (Pax6.2), most closely related to the Pax4/6 class. We propose to designate this newmember Pax10 instead and reconstruct the evolutionary history of the Pax4/6/10 class with solid phylogenetic evidence. Our synteny analysis showed that Pax4, -6, and -10 originated in the 2R genome duplications early in vertebrate evolution. The phylogenetic analyses of relationships between teleost pax6a and other Pax4, -6, and-10 genes, however, do not support the proposed hypothesis of an ancient origin of the acanthopterygian pax6a genes in the 2R genome duplication. Instead, we confirmed the traditional scenario that the acanthopterygian pax6a is derived from the more recent teleost-specific genome duplication. Notably, Pax6 is present in all vertebrates surveyed to date, whereas Pax4 and -10 were lost multiple times in independent vertebrate lineages, likely because of their restricted expression patterns: Among Pax6-positive domains, Pax10 has retained expression in the adult retina alone,whichwe documented through in situ hybridization and quantitative reverse transcription polymerase chain reaction experiments on zebrafish, Xenopus, and anole lizard. (Less)
Please use this url to cite or link to this publication:
author
; and
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Pax6, Pax4, Pax10, gene loss, conserved synteny, gene duplication
in
Genome Biology and Evolution
volume
6
issue
7
pages
1635 - 1651
publisher
Oxford University Press
external identifiers
  • scopus:84927171654
ISSN
1759-6653
DOI
10.1093/gbe/evu135
language
English
LU publication?
no
id
05a1215b-bdbc-4264-9e13-bf801f655ffc
date added to LUP
2018-05-22 21:11:28
date last changed
2022-03-25 01:59:12
@article{05a1215b-bdbc-4264-9e13-bf801f655ffc,
  abstract     = {{Themembers of the paired box (Pax) family regulate key developmental pathways inmanymetazoans as tissue-specific transcription factors. Vertebrate genomes typically possess nine Pax genes (Pax1–9), which are derived from four proto-Pax genes in the vertebrate ancestor that were later expanded through the so-called two-round (2R) whole-genome duplication. A recent study proposed that pax6a genes of a subset of teleost fishes (namely, acanthopterygians) are remnants of a paralog generated in the 2R genome duplication, to be renamed pax6.3, and reported onemore group of vertebrate Pax genes (Pax6.2), most closely related to the Pax4/6 class. We propose to designate this newmember Pax10 instead and reconstruct the evolutionary history of the Pax4/6/10 class with solid phylogenetic evidence. Our synteny analysis showed that Pax4, -6, and -10 originated in the 2R genome duplications early in vertebrate evolution. The phylogenetic analyses of relationships between teleost pax6a and other Pax4, -6, and-10 genes, however, do not support the proposed hypothesis of an ancient origin of the acanthopterygian pax6a genes in the 2R genome duplication. Instead, we confirmed the traditional scenario that the acanthopterygian pax6a is derived from the more recent teleost-specific genome duplication. Notably, Pax6 is present in all vertebrates surveyed to date, whereas Pax4 and -10 were lost multiple times in independent vertebrate lineages, likely because of their restricted expression patterns: Among Pax6-positive domains, Pax10 has retained expression in the adult retina alone,whichwe documented through in situ hybridization and quantitative reverse transcription polymerase chain reaction experiments on zebrafish, Xenopus, and anole lizard.}},
  author       = {{Feiner, Nathalie and Meyer, Axel and Kuraku, Shigehiro}},
  issn         = {{1759-6653}},
  keywords     = {{Pax6; Pax4; Pax10; gene loss; conserved synteny; gene duplication}},
  language     = {{eng}},
  month        = {{06}},
  number       = {{7}},
  pages        = {{1635--1651}},
  publisher    = {{Oxford University Press}},
  series       = {{Genome Biology and Evolution}},
  title        = {{Evolution of the Vertebrate Pax4/6 Class of Genes with Focus on Its Novel Member, the Pax10 Gene}},
  url          = {{http://dx.doi.org/10.1093/gbe/evu135}},
  doi          = {{10.1093/gbe/evu135}},
  volume       = {{6}},
  year         = {{2014}},
}