Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Multicolor COBRA-FISH analysis of chronic myeloid leukemia reveals novel cryptic balanced translocations during disease progression.

Barbouti, Aikaterini ; Johansson, Bertil LU ; Höglund, Mattias LU ; Mauritzson, Nils LU ; Strömbeck, Bodil LU ; Nilsson, Per-Gunnar LU ; Tanke, Hans J ; Hagemeijer, Anne ; Mitelman, Felix LU orcid and Fioretos, Thoas LU (2002) In Genes, Chromosomes and Cancer 35(2). p.127-137
Abstract
During the initial indolent chronic phase of chronic myeloid leukemia (CML), the t(9;22)(q34;q11), resulting in the Philadelphia chromosome (Ph), is usually the sole cytogenetic anomaly, but as the disease progresses into the accelerated phase (AP), and eventually into aggressive blast crisis (BC), secondary aberrations, mainly unbalanced changes such as +8, i(17q), and +Ph, are frequent. To date, molecular genetic studies of CML BC have mainly focused on alterations of well-known tumor-suppressor genes (e.g., TP53, CDKN2A, and RB1) and oncogenes (e.g., RAS and MYC), whereas limited knowledge is available about the molecular genetic correlates of the unbalanced chromosomal abnormalities. Balanced secondary changes are rare in CML AP/BC,... (More)
During the initial indolent chronic phase of chronic myeloid leukemia (CML), the t(9;22)(q34;q11), resulting in the Philadelphia chromosome (Ph), is usually the sole cytogenetic anomaly, but as the disease progresses into the accelerated phase (AP), and eventually into aggressive blast crisis (BC), secondary aberrations, mainly unbalanced changes such as +8, i(17q), and +Ph, are frequent. To date, molecular genetic studies of CML BC have mainly focused on alterations of well-known tumor-suppressor genes (e.g., TP53, CDKN2A, and RB1) and oncogenes (e.g., RAS and MYC), whereas limited knowledge is available about the molecular genetic correlates of the unbalanced chromosomal abnormalities. Balanced secondary changes are rare in CML AP/BC, but it is not known whether cryptic chromosomal translocations, generating fusion genes, may be responsible for disease progression in a subgroup of CML. To address this issue, we used multicolor combined binary ratio fluorescence in situ hybridization (FISH), which allows the simultaneous visualization of all 24 chromosomes in different colors, verified by locus-specific FISH in a series of 33 CML cases. Two cryptic balanced translocations, t(7;17)(q32-34;q23) and t(7;17)(p15;q23), were found in two of the five cases showing the t(9;22) as the only cytogenetic change. Using several BAC clones, the breakpoints at 17q23 in both cases were mapped within a 350-kb region. In the case with the 7p15 breakpoint, a BAC clone containing the HOXA gene cluster displayed a split signal, suggesting a possible creation of a fusion gene involving a member of the HOXA family. Furthermore, one case with a partially cryptic t(9;11)(p21-22;q23) and an MLL rearrangement as well as a previously unreported t(3;10)(p22;p12-13) were identified. Altogether, a refined karyotypic description was achieved in 12 (36%) of the 33 investigated cases, illustrating the value of using multicolor FISH for identifying pathogenetically important aberrations in CML AP/BC. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Genes, Chromosomes and Cancer
volume
35
issue
2
pages
127 - 137
publisher
John Wiley & Sons Inc.
external identifiers
  • wos:000177491400004
  • pmid:12203776
  • scopus:18544377347
ISSN
1045-2257
DOI
10.1002/gcc.10099
language
English
LU publication?
yes
id
12a66279-b0ee-42ec-a8d8-190e05759133 (old id 110419)
alternative location
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12203776&dopt=Abstract
date added to LUP
2016-04-01 11:45:33
date last changed
2022-02-03 04:40:36
@article{12a66279-b0ee-42ec-a8d8-190e05759133,
  abstract     = {{During the initial indolent chronic phase of chronic myeloid leukemia (CML), the t(9;22)(q34;q11), resulting in the Philadelphia chromosome (Ph), is usually the sole cytogenetic anomaly, but as the disease progresses into the accelerated phase (AP), and eventually into aggressive blast crisis (BC), secondary aberrations, mainly unbalanced changes such as +8, i(17q), and +Ph, are frequent. To date, molecular genetic studies of CML BC have mainly focused on alterations of well-known tumor-suppressor genes (e.g., TP53, CDKN2A, and RB1) and oncogenes (e.g., RAS and MYC), whereas limited knowledge is available about the molecular genetic correlates of the unbalanced chromosomal abnormalities. Balanced secondary changes are rare in CML AP/BC, but it is not known whether cryptic chromosomal translocations, generating fusion genes, may be responsible for disease progression in a subgroup of CML. To address this issue, we used multicolor combined binary ratio fluorescence in situ hybridization (FISH), which allows the simultaneous visualization of all 24 chromosomes in different colors, verified by locus-specific FISH in a series of 33 CML cases. Two cryptic balanced translocations, t(7;17)(q32-34;q23) and t(7;17)(p15;q23), were found in two of the five cases showing the t(9;22) as the only cytogenetic change. Using several BAC clones, the breakpoints at 17q23 in both cases were mapped within a 350-kb region. In the case with the 7p15 breakpoint, a BAC clone containing the HOXA gene cluster displayed a split signal, suggesting a possible creation of a fusion gene involving a member of the HOXA family. Furthermore, one case with a partially cryptic t(9;11)(p21-22;q23) and an MLL rearrangement as well as a previously unreported t(3;10)(p22;p12-13) were identified. Altogether, a refined karyotypic description was achieved in 12 (36%) of the 33 investigated cases, illustrating the value of using multicolor FISH for identifying pathogenetically important aberrations in CML AP/BC.}},
  author       = {{Barbouti, Aikaterini and Johansson, Bertil and Höglund, Mattias and Mauritzson, Nils and Strömbeck, Bodil and Nilsson, Per-Gunnar and Tanke, Hans J and Hagemeijer, Anne and Mitelman, Felix and Fioretos, Thoas}},
  issn         = {{1045-2257}},
  language     = {{eng}},
  number       = {{2}},
  pages        = {{127--137}},
  publisher    = {{John Wiley & Sons Inc.}},
  series       = {{Genes, Chromosomes and Cancer}},
  title        = {{Multicolor COBRA-FISH analysis of chronic myeloid leukemia reveals novel cryptic balanced translocations during disease progression.}},
  url          = {{http://dx.doi.org/10.1002/gcc.10099}},
  doi          = {{10.1002/gcc.10099}},
  volume       = {{35}},
  year         = {{2002}},
}