Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

A comparative reactivity study of microperoxidases based on hemin, mesohemin and deuterohemin

Ryabova, Ekaterina LU ; Rydberg, Patrik LU ; Kolberg, M ; Harbitz, E ; Barra, A L ; Ryde, Ulf LU orcid ; Andersson, K K and Nordlander, Ebbe LU (2005) In Journal of Inorganic Biochemistry 99(3). p.852-863
Abstract
Three microperoxidases-hemin-6(7)-gly-gly-his methyl ester (HGGH), mesohemin-6(7)-gly-gly-his methyl ester (MGGH) and deuterohemin-6(7)-gly-gly-his methyl ester (DGGH)-have been prepared as models for heme-containing peroxidases by condensation Of glycyl-glycyl-L-histidine methyl ester with the propionic side chains of hemin, mesohemin and deuterohemin, respectively. The three microperoxidases differ in two substituents, R, of the protoporphyrin IX framework (HGGH: R = vinyl, MGGH: R = ethyl, DGGH: R = H). X-band and high field EPR spectra show that the microperoxidases exhibit spectroscopic properties similar to those of metmyoglobin, i.e. a high spin ferric S = 5/2 signal at g(perpendicular to) = 6 and g(parallel to) = 2 and an estimated... (More)
Three microperoxidases-hemin-6(7)-gly-gly-his methyl ester (HGGH), mesohemin-6(7)-gly-gly-his methyl ester (MGGH) and deuterohemin-6(7)-gly-gly-his methyl ester (DGGH)-have been prepared as models for heme-containing peroxidases by condensation Of glycyl-glycyl-L-histidine methyl ester with the propionic side chains of hemin, mesohemin and deuterohemin, respectively. The three microperoxidases differ in two substituents, R, of the protoporphyrin IX framework (HGGH: R = vinyl, MGGH: R = ethyl, DGGH: R = H). X-band and high field EPR spectra show that the microperoxidases exhibit spectroscopic properties similar to those of metmyoglobin, i.e. a high spin ferric S = 5/2 signal at g(perpendicular to) = 6 and g(parallel to) = 2 and an estimated D value of 7.5 +/- 1 cm(-1). The catalytic activities of the microperoxidases towards K-4[Fe(CN)(6)], L-tyrosine methyl ester and 2,2'-azino(bis(3-ethylbenzothiazoline-6-sulfonic acid)) (ABTS) have been investigated. It was found that all three microperoxidases exhibit peroxidase activity and that the reactions follow the generally accepted peroxidase reaction scheme [Biochem. J. 145 (1975) 93-103] with the exception that the initial formation of a Compound I analogue is the rate-limiting step for the whole process. The general activity trend was found to be MGGH approximate to DGGH > HGGH. For each microperoxidase, DFT calculations (B3LYP) were made on the reactions of compounds 0, I and II with H+, e(-) and H+ + e(-), respectively, in order to probe the possible relationship between the nature of the 2- and 4-substituents of the hemin and the observed reactivity. The computational modeling indicates that the relative energy differences are very small; solvation and electrostatic effects may be factors that decide the relative activities of the microperoxidases. (C) 2005 Elsevier Inc. All rights reserved. (Less)
Please use this url to cite or link to this publication:
author
; ; ; ; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Journal of Inorganic Biochemistry
volume
99
issue
3
pages
852 - 863
publisher
Elsevier
external identifiers
  • wos:000227374900021
  • pmid:15708807
  • scopus:13844271238
ISSN
1873-3344
DOI
10.1016/j.jinorgbio.2004.12.020
language
English
LU publication?
yes
additional info
The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Theoretical Chemistry (S) (011001039), Department of Chemistry (011001220)
id
55312bde-2659-480d-af90-659b5494afb4 (old id 152782)
date added to LUP
2016-04-01 17:11:04
date last changed
2023-01-05 05:47:17
@article{55312bde-2659-480d-af90-659b5494afb4,
  abstract     = {{Three microperoxidases-hemin-6(7)-gly-gly-his methyl ester (HGGH), mesohemin-6(7)-gly-gly-his methyl ester (MGGH) and deuterohemin-6(7)-gly-gly-his methyl ester (DGGH)-have been prepared as models for heme-containing peroxidases by condensation Of glycyl-glycyl-L-histidine methyl ester with the propionic side chains of hemin, mesohemin and deuterohemin, respectively. The three microperoxidases differ in two substituents, R, of the protoporphyrin IX framework (HGGH: R = vinyl, MGGH: R = ethyl, DGGH: R = H). X-band and high field EPR spectra show that the microperoxidases exhibit spectroscopic properties similar to those of metmyoglobin, i.e. a high spin ferric S = 5/2 signal at g(perpendicular to) = 6 and g(parallel to) = 2 and an estimated D value of 7.5 +/- 1 cm(-1). The catalytic activities of the microperoxidases towards K-4[Fe(CN)(6)], L-tyrosine methyl ester and 2,2'-azino(bis(3-ethylbenzothiazoline-6-sulfonic acid)) (ABTS) have been investigated. It was found that all three microperoxidases exhibit peroxidase activity and that the reactions follow the generally accepted peroxidase reaction scheme [Biochem. J. 145 (1975) 93-103] with the exception that the initial formation of a Compound I analogue is the rate-limiting step for the whole process. The general activity trend was found to be MGGH approximate to DGGH > HGGH. For each microperoxidase, DFT calculations (B3LYP) were made on the reactions of compounds 0, I and II with H+, e(-) and H+ + e(-), respectively, in order to probe the possible relationship between the nature of the 2- and 4-substituents of the hemin and the observed reactivity. The computational modeling indicates that the relative energy differences are very small; solvation and electrostatic effects may be factors that decide the relative activities of the microperoxidases. (C) 2005 Elsevier Inc. All rights reserved.}},
  author       = {{Ryabova, Ekaterina and Rydberg, Patrik and Kolberg, M and Harbitz, E and Barra, A L and Ryde, Ulf and Andersson, K K and Nordlander, Ebbe}},
  issn         = {{1873-3344}},
  language     = {{eng}},
  number       = {{3}},
  pages        = {{852--863}},
  publisher    = {{Elsevier}},
  series       = {{Journal of Inorganic Biochemistry}},
  title        = {{A comparative reactivity study of microperoxidases based on hemin, mesohemin and deuterohemin}},
  url          = {{http://dx.doi.org/10.1016/j.jinorgbio.2004.12.020}},
  doi          = {{10.1016/j.jinorgbio.2004.12.020}},
  volume       = {{99}},
  year         = {{2005}},
}